рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Курсовая работа: Система управления цветом CMS: принципы, методы и предпосылки к практическому применению

Курсовая работа: Система управления цветом CMS: принципы, методы и предпосылки к практическому применению

Московский Государственный университет печати

Курсовой проект

 «Система управления цветом CMS: принципы, методы и предпосылки к практическому применению»

Москва, 2009


Реферат

Данная работа посвящена рассмотрению возможностей цветовой коррекции в системе поэлементной обработки, насколько широки возможности современной компьютерной техники, и насколько она облегчает работу с изображениями.

Данный курсовой проект содержит: 3 раздела, 12 рисунков.

Количество источников использованной литературы: 5.

Ключевые слова: система поэлементной обработки (СПОИ), цвет, цветовоспроизведение, цветоделение, цветокоррекция, цветоделительная коррекция, градационная коррекция, селективная коррекция, базовая коррекция, маскирование.


Содержание

1. Введение

2. Основная часть

2.1 Понятие CMS

2.2 Цветовой охват и задачи цветовых преобразований

2.3 Управление цветом на основе пространства CIE LAB

2.4 ICC-профили

2.5 ScanOpen

2.6 VievOpen

2.7 PrintOpen

Вывод

Список литературы


1. Введение

Под управлением цвета понимают согласование всех устройств ввода и вывода внутри единой цепи системы обработки изображения с целью надежного достижения на печатном оттиске, требуемого качества цветовоспроизведения независимо от состава используемых устройств. Система гарантирует оптимальную передачу цвета при условии использования профилей ICC, описывающих характеристики цветопередачи печатного оборудования, монитора и устройств вывода. Важнейшей причиной, заставляющей сегодня работать с системой управления цветом, служит, прежде всего уверенность, что правильный результат на вывод будет получен с первого раза.

До недавнего времени проблема адекватного отображения цвета на различных устройствах решалась в основном путем цветового программного сопряжения отдельных пар устройств: сканер - монитор, монитор – принтер, значительное количество, и каждому новому устройству требовалось построить таблицы пересчета для всех остальных устройств, участвующих в данном технологическом процессе. Эта система еще могла обеспечить удовлетворительное визуальное соответствие изображений на рабочих местах отдельной компании или пре-пресс бюро, но при передаче файлов в другие организации о согласованности цветовоспроизведения приходилось только мечтать. Прорыв наступил когда ряд фирм (Apple, Kodak, Heidelberg, Adobe) предложили записывать в файлы изображений таблицы (профили) с описанием цветовых пространств, под которые эти изображения были созданы. Кроме того, была внедрена сначала на компьютерах платформы Mac (ColorSync), а затем и в Windows система управления цветом - Color Managment System (CMS).

Суть проблемы адекватного цветовоспроизведения заключается в следующем: каждое реальное физическое устройство - сканер, монитор, принтер обладают своим специфическим цветовым охватом. На мониторе приходится имитировать вид изображения на устройствах с более узким цветовым пространством, например, в печати. Система управления цветом позволяет это сделать на основе профиля изображения и профиля устройства. При этом она должна трансформировать как числовые данные изображения (конвертация), так и его визуальное отображение на мониторе. Теперь файл изображения можно сравнить с письмом на незнакомом Вам языке с приложенным к нему словарем. При использовании CMS требуется только один профиль для каждого устройства.

В чем же смысл CMS? Она сравнивает профиль изображения и цветового пространства Вашей операционной системы, при их несовпадении включается механизм преобразования, который дает возможность корректно отобразить файл на другом мониторе или в другой программе и напечатать на другом типе принтера или печати.


2. Основная часть

2.1 Понятие CMS

Понятие “управление цветом” (color management) охватывает достаточно обширную область полиграфического производства, в которой далеко не все вопросы на сегодняшний день являются определенными и решенными окончательно.

В прошлом в закрытых системах допечатной подготовки фирмы-производители тщательно подбирали аппаратные и программные компоненты. Такие фирмы, как Crosfield, Linotype-Hell, Dainippon Screen, Scangraphic и т. д., предлагали пользователям законченные решения, внести изменения в которые было достаточно сложно. В закрытости были свои преимущества: и производители, и пользователи прекрасно знали, чего следует ожидать от оборудования на каждом этапе технологического цикла. Операторы подобных систем являлись профессионалами своего дела, знающими досконально все достоинства и недостатки комплексов и способными учитывать нюансы работы на них. Времена изменились. Теперь в мире доминируют открытые системы, а на рынке предлагается огромное количество аппаратных и программных продуктов различных фирм. Получив возможность выбирать нужное оборудование, фирмы-производители и пользователи оказались перед необходимостью решать весьма серьезную проблему обеспечения совместимости компонентов и достижения, по меньшей мере, такой же надежности и предсказуемости производственного процесса, какими отличались закрытые системы. Пользователь настольных издательских систем и графических программ, не будучи профессионалом в области полиграфии, изначально ориентирован на работу по принципу WYSIWYG - What you see is what you get (“Что вижу, то и получаю”) и, как ему кажется, не нуждается ни в каком управлении цветом. Он уверен: все, что показывает ему монитор, будет в точности воспроизведено устройством вывода. Это действительно так, но только для текста и верстки, где используются два цвета: черный и белый.

2.2 Цветовой охват и задачи цветовых преобразований

Каждое устройство, которое работает с цветом, обладает способностью воспроизводить определенную гамму цветов, то есть имеет так называемый цветовой охват.

Воспроизводимая гамма зависит от многих факторов, начиная с конструкции конкретного устройства, используемого цветового пространства или модели (CMYK, CMY, RGB) и заканчивая расходными материалами (чернилами для принтеров, красками для печатных машин и т. д.). При этом каждое устройство имеет свой, характерный только для него цветовой охват.

Рис.1. Цветовые охваты

На этом рисунке представлены цветовые охваты фотопленки для слайдов, офсетной листовой печати и офсетной рулонной печати. Из приведенных рисунков видно, что все эти охваты лежат внутри фигуры, похожей на треугольник. Это математически рассчитанное цветовое пространство с координатами XYZ, которое было предложено в 1931 году Международной комиссией по освещению CIE (Commission Internationale de 1'Edairage) и включает в себя весь видимый человеческим глазом цветовой спектр. Некоторое время спустя, а именно в 1976 году, пространство CIEXYZ трансформировалось в пространство CIELab, которое в большей мере отвечает условиям субтрактивного синтеза и стало, по сути, стандартным в современных полиграфических системах работы с цветом. Использующиеся для работы в цветных устройствах (сюда относятся мониторы, цветные принтеры, печатные машины и т. д.) пространства имеют определенные координаты внутри общей системы координат XYZ. При этом цветовые охваты у них значительно отличаются друг от друга. В целом аппаратно-зависимое пространство CMYK гораздо меньше аппаратно-зависимого пространства RGB. На рис. 2 показано перекрытие цветовых пространств офсетной печати (CMYK), монитора (RGB) и слайдовой фотопленки (RGB).

Рис. 2 Перекрытие цветовых пространств офсетной печати (в), монитора (б) и слайдовой фотопленки (а).

Хотя модель RGB обладает более широким цветовым охватом, чем CMYK, тем не менее в CMYK имеются области, не представленные в RGB. Другими словами, существуют некоторые печатаемые цвета, не воспроизводимые на экране монитора (например, чистый голубой). Таких цветов нет в устройствах, работающих на основе сигналов RGB. Нередко при работе с различными цветными изображениями необходима процедура трансформации изображения из одного цветового пространства в другое. Естественным требованием в этом случае является отсутствие потери информации во время преобразования. Цвета, лежащие за пределами цветового охвата, воспроизводимого устройством назначения, нужно трансформировать таким образом, чтобы они вошли в пределы этого охвата, и при этом насколько возможно сохранили цвета оригинала. С помощью обычной издательской программы можно обеспечить трансформацию цветов в соответствии с тем цветовым охватом, который присущ конкретному устройству. В итоге на каждом устройстве цветное изображение выглядит по-разному. Главной причиной этого является отсутствие стандартизации цветовых моделей, которые традиционно используются в репродуцировании. RGB-сигналы, с которыми работает сканер, отличаются от RGB-сигналов монитора, которые в свою очередь отличаются от значений модели CMYK. При этом все они являются аппаратно-зависимыми и охватывают только часть видимого спектра. Каждый тип мониторов отличается один от другого, каждый сканер обладает специфическими характеристиками. Что же касается CMYK, то в Европе существует стандарт офсетной печати Eurostandard, но он не включает в себя газетную печать. В США действует SWOP (Specifications for Web Offset Printing), в Канаде есть свой SWOP, похожий на американский, но все же иной. Свой набор печатных “стандартов”, зависящих от типа краски, существует и в Японии. Проблема стандартизации еще более усложняется, если к офсетной добавить глубокую, флексографскую, шести- и семикрасочную печать. [7]

2.3 Управление цветом на основе пространства CIELAB

Управление цветом – это, прежде всего, преобразование цветов из одной модели в другую, выполняемое для широкого спектра устройств и печатных процессов. Дополнительным, но не менее важным требованием, предъявляемым к управлению цветом, является обслуживание всех видов пробной печати, включая создание экранных цветопроб.

Разница между цветной печатью и цветной пробной печатью заключается в том, что для цветной печати цвета трансформируются один раз, тогда как для пробной печати цвета преобразуются в два этапа: сначала в соответствии с цветовым охватом устройства окончательного вывода, а затем для имитации этого окончательного вывода в соответствии с цветовым охватом пробопечатного устройства. Сказанное праведливо и для создания экранных цветопроб. Оптимальным выходом является использование промежуточного цветового пространства, в которое и из которого можно выполнять все трансформации. Пространство-посредник должно обладать определенным набором обязательных характеристик. Во-первых, оно должно быть аппаратно-независимым, чтобы с ним могли работать устройства всех типов. Во-вторых, пространство должно быть стандартизовано на международном уровне. И, наконец, пространство должно иметь максимально возможный цветовой охват. Этим требованиям в полной мере соответствует пространство CIELab.

Рис. 3 Система управления цветом на базе цветового пространства CIELab.

С помощью CIELab оказалось возможным построить систему управления цветом (Color Management System - CMS) для всех устройств независимо от того, являются они устройствами ввода или вывода (рис. 3).

Одним из первых программных продуктов, использующих эту модель в качестве внутреннего цветового пространства, стал LinoColor 3.0 фирмы Linotype-Hell, предназначенный для сканирования и обработки изображений. Рассмотрим на примере этой программы принципиальную схему использования пространства CIELab в качестве внутреннего пространства, считающуюся в настоящее время классической. Программа LinoColor получает RGB-данные со сканера и трансформирует их в пространство CIELab. Для представления на экране монитора Lino-Color трансформирует CIELab в пространство монитора RGB. Для вывода на фотонаборный автомат или цифровую цветопробу выполняется трансформация в пространство CMYK печатного процесса (рис.4).

Рис. 4 Преобразование в цветовое пространство CMYK.

В некоторых случаях одной трансформации недостаточно. Чтобы создать экранную цветопробу на мониторе, LinoColor сначала трансформирует данные в пространство CMYK выбранного печатного процесса, а уже из CMYK в RGB-монитора (рис. 5).

Рис. 5 Преобразование в цветовое пространство RGB-монитора с учетом CMYK-печатного процесса.

Тот же принцип используется для вывода цифровой цветопробы. В этом случае, для того чтобы на цветопробном принтере оказалась возможной имитация печатного оттиска, используется сочетание двух разных печатных таблиц CMYK (рис. 6).


Рис. 6 Преобразование в цветовое пространство CMYK-цветопробы.

В настоящее время подобная схема используется в большинстве программных продуктов различных фирм-производителей, таких как Scitex, Dainippon Screen, Optronics, FujiFilm, ICG и.т.д. [4],[2].

2.4 ICC-профили

Изначально существовал целый ряд различных подходов к достижению качественной цветопередачи. Вполне естественно, что сам ход технического прогресса вынудил участников рынка приложить определенные усилия к тому, чтобы направить разрозненные действия разработчиков и производителей в единое русло и предложить решение, которое могло бы устроить всех. Результатом этих усилий стало появление первого общего стандарта офсетной печати BVD/FOGRA. Позже основная часть BVD/FOGRA превратилась в стандарт ISO, который в очередь определяет следующие положения:

§  триадные цвета (по шкале Eurostandard);

§  цвет бумаги;

§  условия выполняемых измерений;

§  растискивание в процессе печати.

Для контроля качества воспроизведения цвета в процессе печати были разработаны специальные стандартизованные контрольные полосы, или шкалы. Контрольные шкалы работают как индикаторы изменения цвета, для чего необходимо проводить их постоянные (регулярные) измерения. Для контрольных шкал фирмы-производители печатных машин разработали методики, с помощью которых полученные в результате измерений данные преобразуются в программные алгоритмы, управляющие подачей краски. Но это было лишь одним из звеньев будущей системы управления цвета. Начиная с 1993 года, несколько крупнейших компаний решили проводить совместные исследования по выработке общего подхода к управлению цветом. Они сформировали Международный консорциум по цвету (International Color Consortium - ICC), который был призван разрешить проблемы в достижении качественной цветопередачи во всем производственном процессе. Членами-основателями ICC были Adobe Systems Inc., Agfa-Gevaert N.V., Apple Computers Inc., FOGRA, Microsoft Corporation, Eastman Kodak Company, Sun Microsystems, Silicon Graphics Inc., Taligent Inc.

После многочисленных международных дискуссий по вопросу об удобных и приемлемых для всех решениях, ICC создал универсальный, не зависящий от компьютерной платформы стандарт, на основе которого можно описать любое работающее с цветом устройство. Характеристикой устройства служит его цветовой профиль. В основе работы системы согласования цветов должно лежать межпространственное преобразование цветов, за которое должна отвечать операционная система. ICC взял за основу не какую-то одну конкретную операционную систему или одну архитектуру, а сформулировал общий принцип технологического подхода. Кратко его можно сформулировать следующим образом: в рамках операционной системы выделяется отдельный блок, Color Management Framework, который отвечает за наиболее важные функции, связанные с управлением цветом, - организацию профилей, поддержку различных цветовых пространств и т. д. Этот блок выполняет конвертирование данных в аппаратные цветовые пространства устройств ввода/вывода. В качестве стандартных цветовых моделей поддерживаются CIEXYZ и CIELab, как часть стандарта предлагаются и другие модели. Осуществляется поддержка аппаратных пространств с различным числом каналов вывода; создаются профили для трех каналов (RGB, CMY, HSV), четырех каналов (CMYK) и даже семикрасочной печати.

Несомненно, что самым большим прорывом в возможности управления цветом стала система ColorSync фирмы Apple (или Color Matching Methods (CMM) - методы цветового согласования, как их называет сама фирма). ColorSync работает на уровне операционной системы, что означает поддержку управления цветом для всех программ независимо от того, ориентированы они на работу с растровой либо векторной графикой или на верстку. Система предусматривает присутствие так называемого Plug-In port (порта для самонастраиваемых модулей), предназначенного для профилей устройств. По терминологии Apple профиль (profile) - это файл, описывающий цветовые характеристики устройства, к которому при работе обращается та или иная программа для корректного отображения того или иного изображения. С помощью ColorSync обеспечивается цветовая трансформация для всех устройств. Например, программа может запросить выполнить процедуру трансформации цветов, полученных на сканере “а”, в цвета монитора “b” и наконец в цвета принтера “с”.

Рис. 7. Принцип работы ColorSync.

Процесс согласования цветов в ColorSync не зависит от типа приложения и доступен для всех производителей программно-аппаратного обеспечения, что является положительным моментом для распространения среди разработчиков программного и аппаратного обеспечения. Пользователи при этом получают в свое распоряжение инструменты для создания и модифицирования профилей устройств или таблиц цветовой трансформации вместе с инструментами для калибровки сканеров и мониторов. Впервые официальные работы с ICC-профилями были проведены на конференциях FOGRA в феврале 1995 года и Seybold в марте того же года. Профили ICC представляют собой таблицу с данными. Существуют следующие типы профилей ICC, используемых для:

§  устройств ввода;

§  мониторов;

§  устройств вывода;

§  преобразования между цветовыми пространствами;

§  связывания устройств;

§  абстрактные профили.

Одним из основных элементов профиля является набор тэгов, представляющих собой структурированную информацию об источниках создания профиля, используемых цветовых пространствах и т. д. В настоящее время с профилями ICC работает большинство профессиональных полиграфических программных продуктов. Среди них можно выделить ColorRight фирмы Optronics, ColorScope Pro фирмы Dainippon Screen, FotoLook фирмы Agfa, Profile Wizard фирмы Scitex и т. д.

Рассмотрим создание ICC-профилей различных устройств на примере программного обеспечения фирмы Heidelberg Prepress - ColorOpen (в него входят программы ViewOpen, ScanOpen, PrintOpen). Эта разработка стала результатом многолетних исследований в области интеграции допечатного и печатного оборудования, а также реакцией на возросшие требования к репродукционным работам. Эти программы используются для проведения сквозной калибровки процесса репродуцирования и получения на каждой стадии физически, физиологически и психологически точного изображения. Работа программ основывается на модели CIEXYZ, где каждое задействованное устройство имеет свою таблицу цветовых описаний (ICC-профиль), которой управляют система ColorSync и ICM (Image Color Matching) на платформах Apple Macintosh и PC соответственно. Созданные профили “подключаются” к программам обработки векторной или растровой графики (Illustrator, Photoshop, LivePicture, LinoColor и т. д.), и позволяют получать на стадии обработки изображения цветопередачу, максимально приближенную к конечному печатному оттиску.

2.5 ViewOpen

С помощью программы ViewOpen можно записывать, автоматически анализировать цветометрические характеристики монитора и на основе проведенного анализа создавать цветовую характеристическую таблицу для использования ее в качестве ICC-профиля монитора. Профиль монитора описывает его конкретные характеристики и содержит информацию о том, как трансформировать цветовое пространство монитора в эталонное цветовое пространство. Созданный ICC-профиль является уникальным для конкретной пары монитор - видеокарта и не может быть перенесен без коррекции на другую станцию. Только в этом случае можно просматривать и оценивать цветное изображение на экране монитора и сравнивать его с оригиналом.

ViewOpen рассчитывает профили для определенных настроек монитора:

§  разрешение монитора;

§  гамма-кривая и контрастность монитора;

§  цветовая температура в соответствии с постоянным освещением при просмотре изображения (например, дневной свет или искусственное освещение).

При изменении хотя бы одного из этих условий необходимо создавать новый профиль. Остановимся подробнее на настройке цветовой температуры. Цветовая температура белого цвета монитора должна в максимальной степени соответствовать источнику освещения, который применяется при оценке изображения. Вследствие различного освещения рабочего помещения одно и то же изображение на экране монитора может выглядеть по-разному. Поэтому необходимо установить так называемый “уровень белого”, который характеризует настройку белого цвета монитора, соответствующего цвету окружающей среды оператора. Количественно он указывается в градусах по шкале Кельвина, а значение температуры соответствует какому-либо состоянию источника. Например:

3000 К - лампа накаливания, желтовато-белый цвет;

5000 К - обычный солнечный свет;

5500 К - свет от лампы “дневного света”;

6500 К - обычное дневное освещение;

9300 К и выше - голубовато-белый свет, типичное значение уровня белого для некалиброванного монитора.

В программе ViewOpen источникам освещения для цветовой оценки присваивается форма “Dxx”, где “D” означает “daylight” (дневной свет), а “хх” определяет количественную характеристику различных фаз дневного освещения. Эти обозначения приняты в немецком стандарте DIN, и обычно используются следующие значения:

§  D50 - нейтральнобелый, приблизительно соответствует значению цветовой температуры

§  5000 К, Данное значение часто применяется в полиграфии в качестве стандартного для оценки оригиналов, цветопроб и отпечатков;

§  D65 - дневной свет, приблизительно соответствующий значению цветовой температуры 6500 К. Данное значение используется, например, в качестве стандартного при оценке цветов в текстильной промышленности.

Процедура создания профиля состоит в проведении измерений с помощью колориметра в режимах online и offline, которые отличаются друг от друга тем, что в первом случае цветовые элементы на экране монитора измеряются с помощью непосредственно подключенного к компьютеру колориметра и полученные значения отсылаются в программу ViewOpen. Во втором случае программа, поставляемая фирмой-производителем колориметра, сохраняет полученные значения в отдельном файле, который затем загружается в ViewOpen.

Цветовые элементы, имеющие определенные цветовые координаты возникают на экране монитора в определенной последовательности и измеряются с помощью специально разработанного для этой цели колориметра или спектрофотометра.

Для расчета ICC-профилей программа ViewOpen использует представление цветных изображений на экране монитора с 16- или 32-битными видеокартами. Можно также выполнять калибровку цветных мониторов с 8-битными видеокартами, но качество изображения во многих случаях будет неудовлетворительным.

С помощью профилей, созданных программой ViewOpen, нельзя устранить нестабильность цветов на мониторе, причиной которой являются временной фактор прогрева монитора или колебания напряжения в сети. Сказанное относится и к различным геометрическим искажениям изображения на экране монитора, например дисторсии или несведению лучей.

2.6 ScanOpen

Данный программный продукт предназначается для построения ICC-профилей сканирующих устройств. Это могут быть как сканеры, так и цифровые камеры.

Программа стандартно включает в себя шесть тест-объектов, так называемых мишеней (прозрачных и непрозрачных объектов), представляющих шкалы стандарта ISO соответственно IT8.7/1 и IT8.7/2, основных фирм - производителей цветной фотопленки и фотобумаги Agfa, FujiFilm и Kodak.

Страницы: 1, 2


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.