рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Курсовая работа: Полный расчет ректификационной колонны

Курсовая работа: Полный расчет ректификационной колонны

Задание на проектирование

Перечень инженерных расчетов: расчет ректификационной колонны; подробный тепловой расчет дефлегматора; ориентировочный расчет теплообменников.

Перечень работ выполняемых на ЭВМ: расчет дефлегматора.

Состав и объем графической части: технологическая схема; общий вид дефлегматора.

Основные данные: расход исходной смеси 6.5 кг/с; концентрации (мольные доли)  , ; продукты разделения охладить до 25ْС.


Введение

Для получения продуктов сложного состава, разделения изотопов, выделения индивидуальных веществ широкое применение в промышленности получила ректификация. Этот процесс основан на различной летучести составляющих смесь компонентов, т.е. на различных температурах кипения компонентов при одинаковом давлении. Ректификация заключается в многократном частичном испарении жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводится обычно в колонных аппаратах, состоящих из собственно колонны, где осуществляется противоточное контактирование пара и жидкости, и устройств, в которых происходит испарение жидкости и конденсация пара — куба и дефлегматора.

По конструкции ректификационные колонны подразделяются на насадочные, тарельчатые и роторные. Основным типом колонных аппаратов большой производительности считаются ректификационные колонны с барботажными тарелками, а при необходимости самого малого перепада давления на одну теоретическую ступень разделения или при работе в коррозионной среде – колонны с насадкой.

По способу проведения ректификацию разделяют на периодическую и непрерывную.

При непрерывной - разделяемая смесь непрерывно подается в среднюю часть колонны, дистиллят отбирается из дефлегматора, а обедненный легколетучим компонентом остаток отводится из куба колонны, флегма поступает на орошение в верхнюю часть колонны.

При периодической ректификации в нижнюю часть (куб) колонны, снабженной нагревательным устройством, загружают исходную смесь; образующийся пар поднимается верх и конденсируется в дефлегматоре (холодильнике), часть конденсата (флегмы) возвращается на орошение в верхнюю часть колонны, а оставшаяся жидкость отбирается.

Насадочные колонны получили широкое распространение в химической промышленности благодаря простоте их устройства, дешевизне изготовления и малому гидравлическому сопротивлению при пленочном режиме работы. В насадочных массообменных аппаратах жидкость тонкой пленкой покрывает насадку и стекает по ней, при этом поверхность контакта с газообразной фазой определяется поверхностью насадки, свойствами жидкости и гидродинамическим режимом.

Недостатком работы насадочной колонны является неравномерность распределения пара и жидкости по поперечному сечению, что приводит к - неодинаковой эффективности различных ее частей и низкой эффективности работы всей колонны в целом. Значительное увеличение эффективности аппарата достигается применением насадки, частично погруженной в жидкость: газ при этом в виде пузырьков барботируется через слой жидкости.

В отдельных случаях применяют подвижные насадки, которые приводят в колебательное движение восходящим потоком газа, при этом допускаются высокие скорости движения фаз, а поверхность межфазного контакта превышает поверхность насадочных элементов. Эффективность тепло- и массообмена в значительной мере зависит от равномерности распределения жидкости в объеме насадки. Эта задача решается применением специальных оросителей, распределяющих жидкость по верхнему сечению насадки, и использованием материалов (металлических сеток, армированной стеклоткани), обеспечивающих растекание жидкости по поверхности насадки под действием капиллярных сил.

Насадки загружают в аппараты навалом на опорные решетки (нерегулярные насадки), укладывают в определенном порядке или монтируют в жесткую структуру (регулярные насадки). Изготавливают насадки из дерева, металла, стекла, керамики, пластмасс. Элементы нерегулярных насадок выполняют в виде колец, спиралей, роликов, шаров, седел и т.д. Наиболее распространены кольца Рашига, размеры которых обычно составляют 50 мм. Для повышения смачиваемости насадки и пропускной способности аппарата стенки колец иногда снабжают продольными или поперечными канавками или прорезями.

Для отвода жидкости из насадочной колонны применяют две схемы: в первой схеме (обычные насадочные колонны) жидкость стекает по насадке и отводится из нижней части колонны; во второй схеме (эмульгационные колонны) жидкость отводится через переливную трубу.

В данном курсовом проекте производится расчет обычной ректификационной насадочной колонны для разделения бинарной смеси – «ацетон – четыреххлористый углерод» при атмосферном давлении, с насыпной насадкой из стальных колец Рашига.


1. Описание технологической схемы

Исходная смесь подаётся в теплообменник центробежным насосом из ёмкости, где она подогревается до температуры кипения. Затем нагретая смесь поступает на разделение в середину ректификационной колонны на тарелку питания, где состав жидкости равен составу исходной смеси.

Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике. Начальный состав пара примерно равен составу кубового остатка, т.е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают, в соответствии с заданным флегмовым числом, жидкостью (флегмой), получаемой в дефлегматоре путём конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике и направляется в промежуточную ёмкость.

Из кубовой части колонны насосом непрерывно выводится кубовая жидкость - продукт, обогащённый труднолетучим компонентом, который охлаждается в теплообменнике и направляется в ёмкость.

Таким образом, в ректификационной колонне осуществляется непрерывный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащённый труднолетучим компонентом).


2. Инженерные расчеты

2.1 Технологические расчеты

Для технологических расчетов установки необходимо знать свойства веществ при определённых температурах. Основными диаграммами для определения этих свойств являются диаграммы: состав пара – состав жидкости, и зависимость температуры кипения от состава. В приложение 1 приведены диаграммы указанных свойств бинарной системы ацетон- четыреххлористый углерод.

2.1.1 Равновесные данные

x - мольная доля легколетучего компонента в жидкой фазе;

y - мольная доля легколетучего компонента в паровой фазе;

t – температура,ْС.

x y t
0 0 76.74
5.9 20.25 70.80
8.7 27.10 68.74
17.9 40.75 64.45
26.4 48.95 61.91
37.4 56.55 59.83
45.1 61.25 58.74
52.55 65.50 57.94
61.65 70.65 57.18
69.60 75.60 56.67
76.20 79.85 56.36
82.95 84.60 56.15
89.50 89.80 56.01
91.40 91.50 56.02
95.30 95.20 55.99
100.00 100.00 56.08

2.1.2 Материальный баланс

Зная производительность колонны по дистилляту и необходимые концентрации, определим недостающие данные, т. е. производительность по кубовому остатку и питание исходной смеси (GW и GD), на основании уравнений материального баланса.

  

где  - массовая доля легколетучего компонента в исходной смеси, дистилляте и кубовом остатке соответственно.

массовый расход исходной смеси, дистилляте и

кубовом остатке соответственно.

 где MF -молекулярная масса:

 кг/кмоль

 кг/кмоль

 кг/кмоль,

где M1 – молекулярная масса легколетучего компонента; M2 – молекулярная масса второго компонента;

xF, xD, xW- мольная доля легколетучего компонента в исходной смеси, дистилляте и кубовом остатке соответственно.

Где 1-ацетон, 2-четыреххлористый углерод.

кмоль/с

Находим массовую долю по формуле:


 

 

 

Решив систему материального баланса, получим:

кг/с

 кг/с

кмоль/с

кмоль/с

Нагрузка ректификационной колонны по пару и жидкости определяется рабочим флегмовым числом. Для его расчета используют приближенные вычисления по формуле:

 

где Rmin – минимальное флегмовое число.

При этом:


где  - мольные доли легколетучего компонента в жидкости, а *- концентрация легколетучего компонента в паре, находящаяся в равновесии с жидкостью (питанием исходной смеси).

По диаграмме «Равновесное состояние жидкости и пара» (приложение1) находим  при соответствующем значении , таким образом

Тогда:

Также для расчета флегмового числа используем графический метод:

рассчитав число теоретических ступеней контакта (теоретических тарелок)

R=1.5, y=32, n=15.2, n(R+1) =15.2(1.5+1) =38

R=2, y=26.67, n=11.4, n(R+1) =11.4(2+1) =34.2

R=2.5, y=22.86, n=9, n(R+1) =9(2.5+1) =31.5

R=3, y =20, n=8, n(R+1) =8(3+1) =32

R=4, y=16, n=7.33, n(R+1) =7.33(4+1) =36.65

R=5, y=13.33, n=6.43, n(R+1) =6.43(5+1) =38.58

В данном курсовом проекте используем , найденное графическим методом (приложение 3).

2.1.3 Расчет расходов пара и жидкости в верхней и нижней части колонны.

Найдем уравнение рабочих линий:

а) для верхней (укрепляющей) части колонны:

б) для нижней (исчерпывающей) части колонны:

 

где F – относительный мольный расход питания.

 

Определяем температуры для нижней и верхней части колонны для жидкости и пара из диаграммы «Зависимость температуры от равновесных составов пара и жидкости» (приложение1):

ْْC, ْC,

ْْْC, ْC.

Определяем объемный расход пара:


 кмоль/с

Расход пара в нижней и верхней части колонны определяется по формуле:

,

где p0=760 мм рт. ст. – атмосферное давление,

T0=273 K- абсолютная температура.

м3/с

 м3/с

Молярную массу паровой смеси в нижней и верхней части колоны находим по формуле:

 кг/кмоль

 кг/кмоль

Массовые расходы паров в нижней и верхней части колоны находим по формуле:

 кг/с;

 кг/с;


Определим плотности пара в верхней и нижней части колонны по формуле:

кг/м3

кг/м3

Определим вязкость пара в верхней и нижней части колонны для ацетона (1) и четыреххлористого углерода (2):

,

где табличные данные: Па. с, Па. с,

С1=651,С2=384- константы уравнения.

а) для нижней части колонны:

Па.с  Па.с

 

б) для верхней части колонны:

 Па.с

Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.