рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Курсовая работа: Привод ленточного транспортера, состоящего из электродвигателя, открытой клиноремённой передачи цилиндрического одноступенчатого редуктора и соединительной муфты

Число зубьев шестерни:

z1= zΣ / (u+1) =226/ (5.75+1) =33.5≥ z1min=17

Принимаем z1=34.

Число зубьев колеса:

z2= zΣ - z1=226-34=192

Фактическое передаточное число:

uф= z2/ z1=192/34=5,65

Отклонение от заданного передаточного числа:

такое расхождение допускается.

Делительный диаметр шестерни:

d1= zm/ cosβ=34·2/cos (10) =69.049 мм

Делительный диаметр колеса:

d2=2аw - d1=2·230-69.049=390.951 мм

Диаметр окружностей вершин зубьев шестерни и колеса:

dа1= d1+2m=69.049+2·2=73.049 мм

dа2= d2+2m=390.951+2·2=394.951 мм

Диаметр окружностей впадин зубьев шестерни и колеса:

df1= d1-2.5m=69.049-2.5·2=64.049 мм

df2= d2-2.5m=390.951-2.5·2=385.951 мм

Ширина шестерни:

b1= b2 +5=92+5=97 мм

Окружная скорость колеса:

в зависимости от окружной скорости колеса по табл.2.4 [3] принимаем 9 степень точности передачи.

Результаты расчёта основных параметров передачи представлены в таблице 3.1

Таблица 3.1

Модуль (мм) Межосевое расстояние (мм) Число зубьев Делительный диаметр (мм)

Ширина

(мм)

Шестерня 2 230 34 69.049 97
Колесо 192 390.951 92

3.4 Определение сил в зацеплении

Окружная сила в зацеплении:

Радиальная сила в зацеплении:

Fr=Ft·tg20º/cosβ=8425· tg20º cos10=3114 H

где α=20º - стандартный угол.

Осевая сила в зацеплении:

Fa=Ft·tgα=8425· tg20º = 3066 H

Результаты расчёта представлены в таблице 3.2


Таблица 3.2

Окружная сила (Н) Радиальная сила (Н) Осевая сила (Н)
8425 3114 3066

3.5 Проверочный расчёт передачи на контактную усталостную прочность

где KHα=1.1 - коэффициент распределения нагрузки между зубьями (стр.20 [3]);

KHV=1.1 - коэффициент динамической нагрузки (стр.20 [3]);

Расчётные контактные напряжения меньше допускаемых, следовательно, контактная прочность передачи обеспечена.

3.6 Проверочный расчёт передачи на изгибную усталостную прочность

Расчётные напряжения изгиба в зубьях колеса:

σF2=KFαYβKFβKFVYF2Ft /b2m=1·0.93·1·1.2·3.61·8425/92·2=184≤ [σ] F2

где KFα =1 - коэффициент для косозубых колес (стр. 19 [3]);

Yβ =1-β/140=1-10/140=0,93 - коэффициент;

KFβ = 1 - коэффициент, при термообработке улучшения (стр. 19 [3]);

KFV = 1,2 - коэффициент (стр. 19 [3]);

YF2 = 3,61 - коэффициент формы зуба шестерни принят по таблице 2.5 [3] в зависимости от zV1= z1-cos3β =34/ (cos10) 3=35.6

Расчётные напряжения изгиба меньше допускаемых, следовательно, изгибная прочность шестерни обеспечена.

Результаты расчёта передачи на прочность представлены в табл.3.3

Таблица 3.3

Расчётные напряжения Допускаемые напряжения
Расчёт на контактную усталостную прочность 520 516
Расчёт на усталостную изгибную прочность Шестерня 191 275
Колесо 184 275

4. Расчёт клиноремённой передачи

Расчёт производим согласно [4] стр130.

Расчёт начинаем с выбора сечения ремня. В соответствии с рис.7.3 [4] выбираем сечение ремня В.

Диаметр ведущего шкива:

принимаем из ряда стандартных чисел D1 = 200 мм.

Диаметр ведомого шкива учитывая проскальзывание ремня и приняв относительное скольжение ε = 0,015:

принимаем из ряда стандартных чисел D2 =710 мм. Уточняем передаточное отношение:

uрпф= D2/ D1 (1-ε) =710/200 (1-0,015) =3,585

Отклонение от заданного передаточного отношения:

такое расхождение допускается.

Межосевое расстояние передачи:

аmin= 0.55 (D1 - D2) + h= 0.55 (200+710) +14.3=509.6 мм

аmax=2 (D1 +D2) = 2 (200+710) = 1820 мм

где h =14.3 мм - высота ремня.

Предварительно принимаем стандартное значение межосевого расстояния а = 600мм.

Расчётная длина ремня:

Lp=2a+0.5π (D1 +D2) + (D1 +D2) 2/4a = 2·600+0.5π (200+710) +

+ (200+710) 2 /4·600=2737,79 мм

принимаем стандартную длину L = 2800 мм.

Значение межосевого расстояния с учётом стандартной длины ремня:

вычислим

Dcp=0.5 (D1 +D2) = 0.5 (200+710) = 455 мм

При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01L=28 мм, для того чтобы облегчить надевание ремней на шкив, для увеличения натяжения ремней необходимо предусмотреть возможность увеличения межосевого расстояния на 0,025L=70 мм, таким образом ход натяжного устройства составит 28+70=98 мм. Регулировка ремённой передачи будет осуществляться перемещением двигателя при помощи регулировочного винта.

Угол охвата меньшего шкива:

Необходимое число ремней:

где Po= 5.83 кВт - мощность, допускаемая для передачи одним ремнем, табл 7.8 [4] ;

CL= 0.95 - коэффициент, учитывающий влияние длины ремня табл.7.9 [4] ;

CP=1.1 - коэффициент режима работы табл.7.10 [4] ;

Cα = 0.85 - коэффициент угла обхвата [4] стр.135;

Cz = 0.9 - коэффициент, учитывающий число ремней в передаче [4] стр.135;

принимаем z = 4 ремня.

Предварительное натяжение ветвей ремня:

где Θ = 0,3 (Н·с2) /м2 - коэффициент учитывающий центробежную силу [4] стр.136;

ν = 0,5ω1D1=0.5·76.4·0.2 = 7.64 м/с - скорость ремня.

Сила, действующая на вал:

Результаты расчета представлены в таблице 4.1

Таблица 4.1

Тип ремня В
Диаметр приводного шкива (мм) 200
Диаметр ведомого шкива (мм) 710
Длина ремня (мм) 2800
Межосевое расстояние (мм) 634
Число ремней 4
Усилие передаваемое на вал (Н) 1832

5. Выбор муфты

Для соединения тихоходного вала редуктора с валом барабана выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75.

Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того они допускают некоторые неточности сборки.

Муфту выбираем по расчётному моменту.

Расчётный момент:

MP=kTm = 1.4·1647=2306 Hм

где k = 1.4 - коэффициент режима работы стр.267 [3].

Принимаем муфту МУВП 4000-80-1.1 ГОСТ 21424-75.


6. Предварительный расчёт валов

6.1 Выбор материала и допускаемых напряжений

Для шестерни ранее принят материал - сталь 40Х.

Для тихоходного вала также принимаем сталь 40Х.

Допускаемые напряжения для предварительного расчёта валов принимаем в соответствии с рекомендациями стр.31 [3] принимаем [τ] к = 25 Н/мм2.

Механические характеристики улучшенной стали 40Х принимаем по таблице 12.7 [3]:

Предел прочности σв = 800 МПа.

Предел текучести σТ = 640 МПа.

Допускаемые напряжения при расчёте на статическую прочность при коэффициенте запаса

n=1.5 [τ] = 640/1.5 =426 МПа.

6.2 Предварительный расчёт быстроходного вала

Конструкция быстроходного вала представлена на Рис.6.1.

Диаметр выходного конца вала:

принимаем стандартное значение d = 40 мм.

Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:

dn=d+2tцил = 40 + 2·3,5=47,5 мм

где tцил = 3,5 мм, таблица 3.1 [3].

принимаем стандартное значение dn = 50 мм.

Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:

dбп = dп+3r = 50 + 3·2.5 = 57.5 мм

где r = 2.5 мм таблица 3.1 [3].

Принимаем dбп = 60 мм.

Длина выходного участка вала в соответствии со стр.48 [3]:

lm=1,5d= 1,5·40 = 60 мм

принимаем lm= 60 мм.

Длина участка вала под подшипник в соответствии со стр.48 [3]:

lk=1,4·dn= 1.4·50 = 70 мм

принимаем lk=70 мм.

Остальные размеры вала определяются из предварительной прорисовки редуктора.

6.3 Предварительный расчёт тихоходного вала.

Конструкция тихоходного вала представлена на Рис.6.2.

Диаметр выходного конца вала:

принимаем стандартное значение d = 80 мм.

Для удобства монтажа деталей вал выполняем ступенчатой конструкции. Диаметр вала под подшипник:

dn = d+tцил = 80 + 2·5.6 = 91.2 мм

где tцил = 5,6 мм таблица 3.1 [3].

принимаем стандартное значение dn = 95 мм.

Диаметр буртика подшипника принимаем с учётом фасок на кольцах подшипника:

dбп = dп+3r = 95 + 3·4 = 107 мм

где r = 4 мм таблица 3.1 [3].

принимаем dбп = 105 мм.

Диаметр участка вала под колесо:

dk=dбп = 105 мм

Диаметр буртика колеса:

dбк=dк+3f= 105+3·2.5=112.5 мм

где f =2.5 мм таблица 3.1 [3].

принимаем dбк= 115 мм.

Длина выходного участка вала в соответствии со стр.48 [3]:

lм=1.5·d= 1.5·80 = 120 мм

принимаем lм = 120 мм.

Длина участка вала под подшипник в соответствии со стр.48 [3]:

lk=1.4·dn= 1.4·95 = 133 мм

принимаем lk = 140 мм.

Остальные размеры вала определяются из предварительной прорисовки редуктора.

Зазор между поверхностями колёс и внутренними поверхностями стенок корпуса:

принимаем а = 11 мм;

где L= 480 мм - расстояние между внешними поверхностями деталей передач, принято из эскизной компоновки редуктора.


7. Выбор подшипников

7.1 Выбор типа и типоразмера подшипника

Для быстроходного и тихоходного валов принимаем радиально-упорные шариковые однорядные подшипники по ГОСТ 831-75, такой выбор обосновывается тем, что в косозубой цилиндрической передаче возникают кроме радиальной ещё и

значительные осевые нагрузки, а такой тип подшипников обеспечивает нормальную

работу вала при действии на него одновременно радиальных и осевых нагрузок

Предварительно в качестве опор быстроходного вала принимаем подшипник №46210; для тихоходного вала №46219.

7.2 Выбор схемы установки подшипников

Установка вала требует достаточно надёжной осевой фиксации из-за действия осевой нагрузки. Такую фиксацию обеспечивает схема установки подшипника "враспор". При этом торцы внутренних колец подшипника упираются в буртики выполненные на валу, торцы внешних колец упираются и торцы крышек.

Такая схема установки обеспечивает простоту конструкции, небольшое количество деталей узла, простоту регулировки, которая производится набором прокладок.

Для того чтобы избежать защемления вала в опорах в результате температурных деформаций необходимо предусмотреть зазор между торцом внешнего кольца одного из подшипников и крышкой. После установления нормального температурного режима работы вала зазор исчезает. И в соответствии с рекомендациями [3] стр.38 примем для обоих валов зазор 0,5 мм.

7.3 Проверка долговечности подшипников тихоходного вала

7.3.1 Составление расчётной схемы и определение реакций в опорах

Для составления расчетной схемы используем эскизы валов и предварительную прорисовку редуктора.

Расчетная схема тихоходного вала представлена на рис.7.1. На тихоходный вал действуют силы в зацеплении. В подшипниковых опорах - В и Г возникают реакции опор. Реакции представлены в виде составляющих на оси координат. Определяем реакции в опорах В и Г. Расчёт ведём отдельно для плоскости ZOX и плоскости YOX.

где l4 =60 мм; l5 = 120 мм - приняты из предварительной прорисовки редуктора.

Из суммы моментов всех сил, действующих на в плоскости YOZ относительно опоры B получим:

Из суммы моментов всех сил действующих в плоскости YOZ относительно опоры Г получим:

Из суммы моментов всех сил действующих в плоскости XOZ относительно опоры В получим:

Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.