рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Курсовая работа: Проектирование и исследование механизмов двухцилиндрового ДВС

Курсовая работа: Проектирование и исследование механизмов двухцилиндрового ДВС

Кафедра «Теории механизмов и машин»


РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ НА ТЕМУ:

«Проектирование и исследование механизмов

2-х цилиндрового  ДВС»

2010 г.


Содержание

рычажный механизм кинематический силовой

Техническое задание

Введение

1. Определение закона движения механизма при установившемся режиме работы

1.1 Структурный анализ

1.2 Построение кинематической схемы и планов возможных скоростей

1.3 Приведение сил и масс. Определение размеров маховика

1.4 Определение скорости и ускорения начального звена

2. Кинематический и силовой анализ рычажного механизма для заданного положения

2.1 Определение скоростей методом построения планов скоростей

2.2 Определение ускорений методом построения планов ускорений

2.3 Определение векторов сил инерции и главных моментов сил инерции звеньев

2.4 Силовой расчет диады 2-3

2.5 Силовой расчет диады 4-5

2.6 Силовой расчет механизма 1ого класса

2.7 Определение уравновешивающей силы с помощью теоремы Н.Е. Жуковского о «жестком рычаге»

Список использованной литературы


Техническое задание

Вариант 00.

1. Определить закон движения рычажного механизма при установившемся режиме работы.

2. Выполнить кинематический и силовой анализ рычажного механизма для заданного положения.

Описание: 1

Рис. 1

Исходные данные:

Длина звена 1: lAB=lAD=l1=0,1 м; длина звеньев 2 и 4: l2=l4=0,38 м; относительное положение центра массы S шатуна: BS2/BC=DS4/DE=0,38; угловая средняя скорость звена 1: ω1ср=75 рад/с; масса звеньев 2 и 4: m2=m4=15 кг; масса звеньев 3 и 5: m3=m5=12 кг; момент инерции звеньев 2 и 4 относительно центра масс:

JS2=JS4=0,22 кг∙м2; момент инерции кривошипного вала относительно оси вращения: JA1=1,25 кг∙м2; момент инерции вращающихся звеньев редукторов, приведенный к оси кривошипного вала: JР=1,9 кг∙м2; момент инерции гребного вала с винтом:

Jв=4 кг∙м2; диаметр цилиндра: D=0,12 м; допускаемый коэффициент неравномерности вращения кривошипного вала: δ=1/40; координата звена 1 для силового анализа: φ1=30°.


Введение

Данная курсовая работа выполнена по предмету: «Теория механизмов и машин» и состоит из двух разделов. В первом разделе определяется закон движения рычажного механизма при установившемся режиме работы; во втором разделе проводится кинематический и силовой анализы рычажного механизма для заданного положения.

В этой работе рассматривается кривошипно-ползунный механизм, который является основным механизмом в двигателях внутреннего сгорания.

Курсовая работа состоит из пояснительной записки и двух чертежей формата А1 и А2. В пояснительной записке приводится описание заданного рычажного механизма, структурный, кинематический и силовой анализы. На чертежах построена кинематическая схема механизма для двенадцати равноотстающих положений кривошипа, планы скоростей и ускорений для заданного положения механизма, планы сил для заданного положения механизма и схема рычага Жуковского.


 

1. Определение закона движения механизма при установившемся режиме работы

1.1 Структурный анализ

Механизм представляет собой 6-тизвенный рычажный механизм.

Кинематическая схема механизма показана на рис. 1:

звено 1 – ведущее – кривошип BD равномерно вращается вокруг неподвижной оси;

звено 2 – шатун ВC совершает плоскопараллельное движение;

звено 3 – ползун (поршень) C движется поступательно;

звено 4 – шатун DE совершает плоскопараллельное движение;

звено 5 – ползун (поршень) E движется поступательно;

звено 6 – стойка неподвижная (неподвижный шарнир A; неподвижные направляющие ползуна E; неподвижные направляющие ползуна С).

Кинематические пары – подвижные соединения двух звеньев, сведены в таблицу 1.1.

Таблица 1.1.

№ п/п

Соединяемые

звенья

Вид пары Подвижность Класс
1 1-6 вращательная В 1 V крайняя (внешняя)
2 1-2 вращательная В 1 V средняя (внутренняя)
3 1-4 вращательная В 1 V средняя (внутренняя)
4 2-3 вращательная В 1 V средняя (внутренняя)
5 3-6 поступательная П 1 V крайняя (внешняя)
6 4-5 вращательная В 1 V средняя (внутренняя)
7 5-6 поступательная П 1 V крайняя (внешняя)

Кинематических пар IV класса в данном механизме нет.

В результате:

- число кинематических пар V класса р5 = 7;

- число кинематических пар IV класса р4 = 0.

Степень подвижности механизма W определяется по формуле Чебышева:

W = 3n – 2p5 – p4,

где n – число подвижных звеньев,

p5 – число кинематических пар V класса,

p4 – число кинематических пар IV класса.

Получаем:

W = 3·5 – 2·7 – 0 = 1,

т.е. механизм имеет одно ведущее звено – кривошип BD.

Рычажный механизм состоит из механизма 1-го класса и двухповодковых групп.

1. Диада 4-5 (рис. 1) – шатун DE с ползуном E – представляет собой двухповодковую группу второго вида, т.е. диаду с двумя вращательными и одной поступательной (конечной) парами.

Число подвижных звеньев n = 2.

Число кинематических пар с учетом незадействованной, но учитываемой при определении степени подвижности диады: р5 = 3; р4 = 0.

Степень подвижности диады:

W45 = 3·2 - 2·3 – 0 = 0

2. Диада 2-3 (рис. 1) – шатун BC с ползуном C представляет собой двухповодковую группу второго вида, т.е. диаду с двумя вращательными и одной  поступательной (конечной) парами.

Число подвижных звеньев n = 2.

Число кинематических пар с учетом незадействованной, но учитываемой при определении степени подвижности диады: р5 = 3; р4 = 0.

Степень подвижности диады 2-3:

W23 = 3·2 - 2·3 – 0 = 0

3. Механизм 1-го класса (рис. 1) – ведущее звено 1 (кривошип BD), соединенное шарниром A с неподвижной стойкой 6.

Число подвижных звеньев n = 1.

Кинематические пары в точках B и D учтены в диадах 4-5 и 2-3.

Число кинематических пар: р5 = 1; р4 = 0.

Степень подвижности механизма 1-го класса:

W1 = 3·1 - 2·1 – 0 = 1

1.2 Построение кинематической схемы и планов возможных скоростей

Определяем недостающий размер механизма – ход поршня. Для кривошипно-ползунного механизма без эксцентриситета ход поршня:

Н = 2l1 = 2∙0,1 = 0,2 м.

Строим кинематическую схему механизма для двенадцати равноотстающих положений кривошипа в масштабе μl = 0,002 м/мм. Крайнее верхнее положение т. В кривошипа, соответствующее верхнему мертвому положению поршня 3, принимается за исходное и ему присваивается номер «0».

Планы возможных скоростей для двенадцати положений механизма строятся на основании векторных уравнений:

и условия, что направления скоростей точек С и Е совпадают с осью цилиндров.

, , ,  - векторы абсолютных скоростей точек С, В, Е и D, а  и  - векторы скоростей точки С относительно точки В и точки Е относительно точки D, причем  и .

Построение планов начнем, задавшись длиной векторов VB = VD = 50 мм, одинаковой для всех положений механизма.

1.3 Приведение сил и масс. Определение размеров маховика

Определим момент инерции маховика и его размеры по методу Мерцалова, используя теорему об изменении кинетической энергии и делая предварительно приведение сил и масс к начальному (первому) звену механизма.

Построим индикаторную диаграмму в масштабе:

 МПа/мм,

где Рmax – максимальное давление в цилиндре, МПа;

рmax – максимальная ордината индикаторной диаграммы в мм.

Внешние силы и моменты, действующие на звенья механизма: силы давления газов на поршни: Рд3 и Рд5; силы тяжести звеньев:

G2 = G4 = gm2 = 10·15 = 150 H;

G3 = G5 = gm3 = 10·12 = 120 H,

приведенный момент сопротивления МСпр = const, величина которого пока неизвестна. Максимальное усилие на поршень:

Рдmax = F·Pmax = (πD2/4)· Pmax = (3,14·0,122/4)· 5,14·106 = 56,5 кН

Для удобства использования индикаторную диаграмму преобразуем в график сил Рд3(Sc). За ординаты графика сил принимаются ординаты, снимаемые с индикаторной диаграммы, тогда масштаб графика сил определится по формуле:

µр’ = µр·F·106 = µр·(πD2/4)·106 = 0,056·(3,14·0,122/4)·106 = 0,63 кН/мм

Определим, из условия равенства элементарных работ (мощностей) приведенного момента и приводимых сил, приведенный момент от сил давления газов и сил тяжести звеньев для группы Ассура II22(2,3)(цилиндр С):

Для первого положения механизма:

1,4 кН·м

Расчеты показывают, что влияние сил веса звеньев на значение приведенного момента незначительно ( <<2%) и им можно пренебречь. Учитывая также, что угол между вектором силы и вектором скорости точки приложения этой силы всегда равен 0° или 180°, расчетная формула для определения приведенного момента сил, действующих на группу Ассура II22(2,3), окончательно запишется:

.

Выполним расчет  для двенадцати положений механизма, данные сведем в таблицу 1.

Приведенный момент инерции  звеньев второй группы механизма, к которым относятся все звенья, кроме первого, определяется на основании равенства кинетической энергии звена приведения и приводимых звеньев:


Для первого положения механизма:

= 0,2482 кг/м2

Выполним расчет  для двенадцати положений механизма, данные сведем в таблицы 2, 3.

По результатам табличных расчетов строим графики:

Масштаб графика  по оси абсцисс при базе графика х = 300 мм равен:

µφ = 2π/х = 6,28/300 = 0,0209 рад/мм.

Аналогично для графика :

µφ = 2π/х = 6,28/300 = 0,0209 рад/мм.

Таблица 1

Обозначение параметра Положение механизма
0 1 2 3 4 5 6 7 8 9 10 11

, мм

87 37 10 4 1 0,2 0,1 -0,1 -0,2 -1 -4 -18

µр’, кН/мм

0,63

55 23 6 2,5 0,6 0,1 0,06 -0,06 -0,1 -0,6 -2,5 -11

l1, м

0,1
pb, мм 50
pc, мм 0 31 49 50 37,5 19 0 19 37,5 50 49 31
pc/pb 0 0,62 0,98 1 0,75 0,38 0 0,38 0,75 1 0,98 0,62

, кН·м

0 1,43 0,59 0,25 0,05 0,004 0 -0,002 -0,008 -0,06 -0,25 -0,68

Страницы: 1, 2, 3, 4


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.