рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Реферат: Производство серной кислоты

Вывод: реакция окисления SO2 наиболее полно протекает при невысоких температурах. Из этого следует, реакцию окисления SO2 целесообразно проводить при невысоких температурах. Повышение давления, по принципу Ле-Шателье, влияет положительно.

9. Кинетика процесса окисления диоксида серы

Константа скорости реакции: определяется из уравнения Аррениуса.

К=К0*е(-Еа/RT)=9,3*105*е(-79000/430*8,31)=0,13

Еа- энергия активации (79000Дж/моль)

R- газовая постоянная (8,31)

Е- температура

К0 – предэкспоненциальный множитель (9,3*105сек)


Расчет равновесной степени превращения

Таблица 3

Значения равновесной степени превращения при разных температурах

T, 0C

T, K Kp

xp %

100 373 8,78 99,99
200 473 5,9 98,82
300 573 4,04 94,47
400 673 2,72 86,54
500 773 1,74 79,23

Таблица 4

Значения равновесной степени при различном содержании О2 и SO2 в газовой смеси

Т, оС

Содержание О2

Содержание SO2

хр

 400 4 12 98,57
6 12 93,29
8 12 86,57

Исходя из полученных данных таблиц 3 и 4, можно сделать следующий вывод: с точки зрения равновесной степени превращения, процесс окисления диоксида серы нужно вести при низком содержании SO2 в газовой смеси и при низких температурах.

Расчет времени контактирования газовой смеси в контактном аппарате

Для того, чтобы рассчитать время контактирования, разделим слой катализатора на 5 частей.


Таблица 5

Время контактирования газа на первом слое катализатора

№ слоя a b t τ, сек
1 4 12 430 0,362
2 4 12 0,827
3 4 12 0,407
4 4 12 0,752
5 4 12 0,84

τ = ∑Δτ =3,188 сек

Общее время контактирования на первом слое котализатораτ =3,188 сек.

Таблица 5

Время контактирования газа на втором слое катализатора

№ слоя a b t τ, сек
1 4 12 400 0,953
2 4 12 1,124
3 4 12 1,352
4 4 12 1,448
5 4 12 1,503

τ = ∑Δτ =6,38 сек

Расчет увеличения температуры

Тк= Тн + λΔх=787,26 К

Тн, Тк –начальная и конечная температуры, К

 λ –коэффициент повышения температуры газа при изменении степени превращения на 1 % в адиабатических условиях

Δх – повышение степени превращения

10. Конденсация серной кислоты

Конденсация парой серной кислоты. В некоторых случаях, газ, используемый для получения серной кислоты, не содержит вредных примесей (мышьяка, фтора). Тогда экономически целесообразно не подвергать такой газ промывке в специальной аппаратуре, а передавать сразу на контактирование. Обычно его не подвергают также осушке, поэтому такой процесс называют мокрым катализом (например, получение серной кислоты из сероводорода). Газ, поступающий на стадию получения серной кислоты, содержит SO3 и Н20, и образование серной кислоты происходит не в результате абсорбции серного ангидрида растворами кислоты, а вследствие образования паров H2SO4 и конденсации их в башне с насадкой или другой аппаратуре, предназначенной для этого процесса.

Процесс конденсации более интенсивен (идет с большой скоростью), чем процесс абсорбции. Кроме того, конденсация протекает при высокой температуре, что облегчает отвод и использование тепла.

При медленном охлаждении газа, содержащего SO3 и Н2О, можно провести процесс конденсации паров серной кислоты без образования тумана. Однако скорость процесса при этом мала и часто экономически выгоднее вести охлаждение с большей скоростью, допуская образование некоторого количества тумана, а затем выделить этот туман из газовой смеси. Чтобы туман легче осаждался в фильтрах, процесс ведут при таких условиях, в которых образуются крупные капли. Этому соответствует невысокое значение возникающего пересыщения и более высокая температура орошающей кислоты, чем при обычном процессе абсорбции ("горячая" абсорбция).

Конденсация кислоты идет внутри стеклянных трубок, в которые поступает технологический газ, содержащий пары кислоты. Внутри стеклянных трубок расположены спирали, служащие в качестве центров для осаждения серной кислоты. На конце каждой трубки установлен патронный фильтр (каплеотбойник), предназначенный для улавливания тумана серной кислоты. Внешняя поверхность труб (межтрубное пространство) охлаждается атмосферным воздухом. Очищенный газ с остаточной концентрацией серной кислоты менее 20 ррм и температурой не более 120 градусов цельсия сбрасывается в дымовую трубу.

Около 35 % (масс.) серной кислоты конденсируется в объеме, при этом пары превращаются в капли жидкости, переходят в туман и уносятся потоком газа.

 Давление пара в котле-утилизаторе поддерживается достаточно высоким, чтобы температура теплообменных поверхностей. котла была выше точки росы серной кислоты (275 °С).

Несконденсированный газ из башни-конденсатора по футерованному газоходу через гидравлический затвор поступает в мокрые электрофильтры. Последние предназначены для улавливания изгазов тумана серной кислоты концентрацией 93— 94 % (масс.). Гидравлический затвор может также служить брызгоуловителем. Очищенный газ выводится в атмосферу. Для первоначального прогрева катализатора в контактном аппарате используют пусковой подогреватель, в котором воздух нагревается за счет сжигания топливного газа.

Использование башни-конденсатора в производстве серной кислоты позволяет снизить количество стадий: в место 4 стадий процесс протекает в 3.

1 стадия - это сжигание сероводорода в котлах-утилизаторах;

2 стадия – это окисление диоксида серы в контактном аппарате

3 стадия – это конденсация паров серной кислоты в конденсаторе.

Данный аппарат позволяет избежать процесса абсорбции, что, в свою очередь, снижает количество аппаратов

11. Термодинамический анализ процесса конденсации

Расчет теплового эффекта реакции конденсации SO3:

SO3 + H2O = H2SO4

кДж

Q=-ΔН=174,26 кДж

Реакция экзотермическая- протекает с выделением тепла.

ΔS=Дж

ΔG=ΔH-TΔS=-174,26-298*-288,07=-86019,12

Энергия Гиббса значительно меньше нуля. Это значит, что реакция термодинамически возможна.

Н2Ог = Н2Ож

Таблица 3

Значения термодинамических величин

SO3 + H2O = H2SO4

Н2Ог = Н2Ож

ΔН -130,26 кДж -44 кДж
ΔS -120,55Дж -118,78 Дж
Q 130,26 кДж 44 кДж
ΔG -165656,44 -8603,56

Таблица 4

Значение ∑ 2-ух реакций
ΔН -174,26 кДж
ΔS -239,33 Дж
Q 174,26 кДж
ΔG -174260

При стандартных условиях реакция конденсации воды термодинамически возможна.

Реакция конденсации серной кислоты термодинамически возможна.

Расчет константы равновесия

DG=-R*T*lnKp

lgKp=-DG/2,3*8,31*Т

Kp=10-DG/19,113*Т

Таблица 5

Значения констант равновесия в зависимости от температуры

Т,0С

Т,К DG Kp
100 373 -84989,9

5,8*10-4

200 473 -61056,9 0,528
300 573 -49090,4 45,43
400 673 -37123,9

1,043*103

Страницы: 1, 2, 3, 4, 5


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.