рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Реферат: Теплообменные аппараты

Лучше все-таки разбирать. Химическая промывка зачастую не может дать желаемого результата, необходим правильный подбор химреагента под загрязнения. Если отмывка не осуществлена полностью, то оставшиеся загрязнения сыграют роль катализаторов и пластинчатый теплообменник снова зарастет очень быстро. Кроме того, утилизация химических реагентов дело не простое. Пластинчатый теплообменник поэтому и называется разборный: это нормально его разбирать для очистки, т.к. уплотнительные прокладки допускают до 10-15 разборок. 

 

9. Для очистки нужны специальные химикаты. Поставщик может за поставку химикатов брать много денег. То есть просто тряпкой его не почистить.

Для пластинчатых теплообменников Ридан химикаты не нужны, можно разобрать и легко почистить, даже тряпкой .

 

10. В период пуско-наладочных работ и в период обслуживания ПТО иногда, очень так, шумно работают.

ПТО может работать шумно, только если он неправильно подобран и работает с высокими скоростями течения.

 

11. Беспокоит то, что просвет между пластинами малый, и значит, это слабое место.

Несмотря на небольшие размеры каналов (3мм) при установке механических фильтров на входах в пластинчатый теплообменник - это не является проблемой в принципе. На сегодняшний день имеется опыт работы пластинчатых теплообменников Ридан вообще без фильтров на режимах сырая нефть - товарная нефть. А это несравнимо более грязные жидкости.

 

12. Пластинчатый теплообменник практически мгновенно может в потоке охладить продукт. А там, где потоки маленькие, пластинчатый теплообменник не поставишь, он просто не выполнит свою функцию.

На маленький расход можно поставить маленький пластинчатый теплообменник с малым количеством пластин и получить высокие скорости, это не проблема.

13. По сравнению с другими видами теплообменников, у пластинчатых больше гидравлическое сопротивление, и если нужно, чтобы сопротивление было меньше, приходится брать теплообменник больше и дороже.

На самом деле пластинчатый теплообменник может быть подобран под любое заданное гидравлическое сопротивление. Естественно, при снижении заданного сопротивления он увеличивается, но это характерно для любого теплообменного аппарата.

1.5. Экономия при подключении теплообменников “Риден” по новой схеме в горячем водоснабжении

Вы можете уменьшить свои затраты почти на 30% при закупке и монтаже теплообменного оборудования систем горячего водоснабжения для водяных тепловых сетей. Такую экономию дает применение пластинчатых теплообменников Ридан, подключаемых по новой схеме. Речь идет об использовании параллельной схемы с заниженной температурой «обратки», потребляющей аналогичное количество греющего теплоносителя, вместо двухступенчатых схем горячего водоснабжения.

Исторический экскурс

В российских условиях до недавнего времени в системах теплоснабжения применялись кожухотрубные теплообменники (типа ОСТ), в том числе и для приготовления горячей воды для населения.

Появление в 80-х годах прошлого столетия в России пластинчатого теплообменника было подобно эффекту разорвавшейся бомбы. С одной стороны, взрывная волна пробила брешь в стене технической консервативности, и пластинчатый теплообменник заявил о себе как об эффективном средстве передачи тепла. Но были и пострадавшие от взрыва – те, кто обожглись на неправильном подборе или неграмотной установке теплообменника. Со временем нюансы сгладились, и пластинчатый теплообменник прочно занял свое место в Российских системах теплоснабжения.

Основной сферой применения пластинчатого теплообменника в коммунальном теплоснабжении на сегодняшний момент являются системы горячего водоснабжения, где он эффективно вытесняет устаревший кожухотрубный теплообменник.

Принципы построения существующих схем горячего водоснабжения

Сейчас в России существуют три основные схемы горячего водоснабжения, в которых используются теплообменники: параллельная одноступенчатая схема горячего водоснабжения; двухступенчатая смешанная схема горячего водоснабжения; двухступенчатая последовательная схема горячего водоснабжения.

Самая простая и самая недорогая - параллельная схема. Нагрев воды происходит в одном теплообменнике. Пластинчатый теплообменник горячего водоснабжения установлен параллельно системе отопления, последовательно с регулирующим клапаном. Регулирование осуществляется одним клапаном и заключается в поддержании постоянной температуры нагретой воды в зависимости от величины водоразбора. Схема простая и надежная. Однако при обычном подходе к подбору теплообменника (на температурный режим в точке «излома» температурного графика) для горячего водоснабжения эта схема самая неэкономичная в плане расхода греющего теплоносителя. По сравнению с двухступенчатой схемой объект, оборудованный параллельной схемой горячего водоснабжения, будет потреблять больше теплоносителя при тех же самых нагрузках. Использование такой схемы в масштабах города ведет к увеличению насосных станций и диаметров теплосетевых труб.

Для снижения расходов теплоносителя и, таким образом, затрат на его транспортировку российские инженеры разработали двухступенчатые схемы, позволяющие использовать тепло обратной воды системы отопления для предварительного подогрева исходной холодной воды. В основу положен принцип экономайзера и догревателя. В этом случае приготовление воды горячего водоснабжения ведется на двух теплообменниках. Пластинчатый теплообменник первой ступени устанавливается на обратном трубопроводе системы отопления последовательно с ней. Он работает как экономайзер. В нем холодная вода подогревается до 30-40°С, затем она подается во вторую ступень и догревается до требуемой температуры, обычно 60°С, горячим теплоносителем. Вторая ступень включается параллельно или последовательно системе отопления в зависимости от схемы.

Применение двухступенчатых схем позволяет при одинаковой нагрузке горячего водоснабжения экономить до 40% теплоносителя относительно его расхода для параллельной схемы. Это огромный плюс, так как помимо экономии теплоносителя в таких схемах температура «обратки» существенно ниже, чем требуется по температурному графику, что ведет к увеличению КПД источника тепла.

Однако по закону сохранения энергии: «если что-то где-то прибыло, то значит, что-то где-то убыло». Для работоспособности таких схем следует очень грамотно подбирать теплообменники, ведя увязку гидравлического режима системы горячего водоснабжения с системой отопления, поскольку первая ступень всегда включена последовательно системе отопления и является дополнительным «паразитным» сопротивлением для теплоносителя системы отопления. Неправильный подбор теплообменников горячего водоснабжения может привести не только к недостатку горячей воды у жителей, но и к плохой работе самой системы отопления, что в принципе может привести к аварийным ситуациям. Отсюда следует, что подбор оборудования для такой схемы горячего водоснабжения должен вести квалифицированный специалист, способный увязать ступени системы горячего водоснабжения между собой, с системой отопления и с регулирующим клапаном.

И естественно, двухступенчатые схемы горячего водоснабжения более дорогие, т.к. требуют для работы два пластинчатых теплообменника, затраты на монтаж также выше. Стоимость такой системы в 2-4 раза выше параллельной, в зависимости от соотношения нагрузок отопления и горячего водоснабжения. Такое удорожание в основном дает теплообменник первой ступени, особенно это заметно при малой величине соотношения нагрузок. В этом случае расход холодной воды невелик, но для его нагрева через первую ступень должен пройти большой расход теплоносителя из системы отопления и второй ступени. Соотношение расходов в этом случае может достигать пяти. Естественно, габариты/стоимость первой ступени растут при практически неизменной мощности.

Как видно, при всех плюсах двухступенчатых схем нагрева горячей воды существует и масса минусов. Ну, без этого в технике и не бывает. Как говорится, идеальных систем не существует. Но все-таки возникает вопрос: возможно ли создать такую систему горячего водоснабжения, которая сочетала бы в себе простоту и надежность эксплуатации параллельной схемы и экономию теплоносителя двухступенчатых схем? Попытаемся на него ответить.

Параллельная схема горячего водоснабжения с заниженной температурой «обратки»

Вернемся к началу статьи, где велась речь об эффективности пластинчатого теплообменника. Что если для параллельной схемы использовать теплообменник, рассчитанный, не как положено, на точку излома температурного графика, а с существенным занижением температуры обратной воды?

Такое занижение сразу позволяет эффективно снижать расход греющего теплоносителя. Начиная с температуры «обратки» в 25°С, разница в расходах для параллельной и двухступенчатой смешанной схем становится незначительной. Теперь попытаемся понять, что дает такое использование пластинчатого теплообменника, включенного по такой схеме. Во-первых, это простая параллельная схема, во-вторых, расход греющего теплоносителя максимально приближен или в некоторых случаях ниже, чем расход для двухступенчатой схемы.

Однако создание такой схемы возможно с использованием только пластинчатого теплообменника, так как попытка создать ее на кожухотрубных аппаратах ведет к увеличению числа секций и занимаемой ими площади и, конечно, стоимости, как для двухступенчатой схемы.

При сравнении стоимостных и технических показателей двухступенчатой смешанной схемы и новой параллельной схемы, рассчитанных на одни и те же условия работы, получаем, что экономический эффект Ваших капиталовложений от внедрения параллельной схемы горячего водоснабжения с переохлажденной «обраткой» растет с увеличением нагрузки горячего водоснабжения и в среднем равен 25-30%. Кроме того, монтажные и эксплуатационные затраты на один теплообменник меньше, почти в два раза.

Резюме

Отказ от двухступенчатых схем и применение новой схемы горячего водоснабжения с заниженной температурой «обратки» позволяет Вам достичь следующего:

- существенно сэкономить средства (до 30%) на начальном этапе при закупке и монтаже пластинчатых теплообменников горячего водоснабжения;

- сохранить те же расходы теплоносителя, что и при использовании двухступенчатой схемы;

- упростить общую систему теплоснабжения: независимость системы отопления от системы горячего водоснабжения.

Учитывая рекомендации СП 41-101-95, при грамотном технико-экономическом обосновании можно подключать систему горячего водоснабжения по любой схеме, которая даст максимальный выигрыш в техническом плане и обеспечит потребность людей в горячей воде.


2.  Теплообменники производителя “Funke”

Сегодня "Funke Rus" - один из крупнейших российских поставщиков пластинчатых теплообменников с центральным офисом в Москве и широкой дистрибьютерской сетью. Компания является официальным представительством Funke GmbH (Германия). Шесть региональных представительств по всей России дают возможность быть максимально близкими к Вам. Инженеры-консультанты индивидуально сопровождают каждый проект от начала до конца.

Единый инженерно-расчетный центр, обладающий многолетним опытом подбора оборудования, оперативно предоставляет надежное решение Ваших задач. Изготавливая теплообменники с использованием пластин немецкой компании Funke, крупного европейского производителя, мы обеспечиваем высокое качество оборудования в сочетании с доступной стоимостью. Собственная дистрибьютерская сеть позволяет нам обеспечивать оборудованием Funke любых характеристик, максимально подходящим для Ваших нужд по всей территории Российской Федерации.

Каждый теплообменник проходит всесторонний контроль качества при изготовлении и сборке. Он включает в себя проверку комплектующих и опрессовку готового изделия. Таким образом, неприятности, связанные с возможными отказами оборудования, предотвращаются еще при производстве. Кроме того, наши дистрибьютеры осуществляют сервисное гарантийное и послегарантийное обслуживание установленного оборудования и техническое консультирование с учетом всех особенностей объектов. Для наиболее полного решения Ваших задач мы обеспечиваем широкий спектр дополнительных услуг по подбору и поставке оборудования, техническому проектированию, комплектации тепловых пунктов сопутствующим оборудованием ведущих европейских производителей.


2.1 Кожухопластинчатые теплообменники со сварными кассетами

Этот теплообменник состоит из кассетного пакета, заключенного в цилиндрический кожух. Каждая кассета образована двумя профилированными пластинами, сваренными по трем сторонам и имеющим продольную перегородку. Эта перегородка формирует U-образный поток среды, протекающей внутри кассеты. Кассеты собраны в пакет с фиксированными зазорами между кассетами.

Кассетный пакет заключен в кожух теплообменника. Соединение кассет с фронтальным фланцем кожуха осуществляется посредством сварки по периметру каждой кассеты с кассетной плитой, аналогично соединению труб с трубной плитой в кожухотрубном теплообменнике.

Фронтальный фланец кожуха оснащен входным и выходным патрубками и коллекторами

 Предельная простота, большие возможности:

Как и в кожухотрубных теплообменниках, циркуляция среды по стороне кожуха может осуществляться как при помощи поперечных перегородок [многоходовая схема по стороне кожуха], так и вдоль обечайки кожуха параллельно кассетному пакету.

По существу, кожухопластинчатые теплообменники разработаны по аналогии с кожухотрубными теплообменниками. При этом они сочетают в себе высокую эффективность первых с надежностью и высокими предельными рабочими параметрами последних.

ПРЕИМУЩЕСТВА:

• Высокие предельные эксплуатационные характеристики

• Высокая эффективность пластинчатых теплообменников

• Высокая надежность кожухотрубных теплообменников

• Разделительные пластины позволяют организовать многоходовую схему теплообмена

Основные варианты исполнения:

Тип S-CFU

Полностью сварная конструкция - очень компактная и надежная, поскольку не содержит уплотнений.

Тип S-BFU

Неразборная полностью сварная конструкция кассетного пакета с распределительной камерой [коллекторами] и фронтальным фланцем. Сторона кожуха доступна для механической чистки.

Тип S-DFU

Разборная распределительная камера: кассетную плиту с кассетным пакетом можно отсоединять от фронтального фланца. Сторона кожуха доступна для механической чистки. Сторона пластин доступна для осмотра. Возможна быстрая замена всего кассетного пакета или отдельной кассеты.

2.2. Паяные пластинчатые теплообменники.

Паяные пластинчатые теплообменники изготовлены из чеканных нержавеющих пластин, которые паяются медью вакуумной технологией. При сборке каждая вторая пластины симметрично относительно плоскости поворачивается на 180 градусов. Таким образом, возникают две взаимно изолированные проточные системы, в которых при сочетании с противотоком происходит передача тепла. Профиль пластин способствует высокой турбулентности потоков, что обеспечивает высокоэффективную передачу тепла, даже при малых скоростях жидкостей.

Стандартное исполнение паяных пластинчатых теплообменников (Тип 1) предусматривает одностороннее подключение теплоносителей. Возможно двухстороннее подключение, а также изготовление и поставка многоходовых и двухступенчатых паяных пластинчатых теплообменников. На рисунке приведены схемы этих теплообменников.

Тепловой эффект в паяных пластинчатых теплообменниках

Теплопередача паяного пластинчатого теплообменника зависит от профиля пластин. Различные профили пластин создают различную турбулентность потоков, что определяет теплопередачу. Мы предлагаем три различных профиля пластин: H, M, L.

Для пластин Н характерна высокая теплопередача при относительно высокой потере давления, для пластин М - средняя теплопередача и средние потери давления, для пластин L - низкая теплопередача и низкая потеря давления.

Преимущества паяных пластинчатых теплообменников

Широкий диапазон мощностей предлагаемых паяных пластинчатых теплообменников: от 5-10 кВт до нескольких МВт на единицу.
Для изготовления пластин применяется нержавеющая сталь производства заводов Krupp. После штамповки пластины подвергаются электрополировке, что значительно уменьшает вероятность образования микротрещин и отложения накипи. Малый вес и компактность паяных пластинчатых теплообменников. Высокие рабочие температуры и рабочие давления.
Простой монтаж и предельно простое обслуживание и сервис.
Возможность поставки паяных пластинчатых теплообменников с любыми конфигурациями присоединений.

На основании заполненных опросных листов в течение 1-3 часов подготавливаются коммерческие предложения на паяные пластинчатые теплообменники и высылаются заказчикам с техническими характеристиками и чертежами. Срок поставки паяных пластинчатых теплообменников - от 1 дня до 4 недель (в случае отсутствия необходимой модели на складе). Срок службы паяных пластинчатых теплообменников до 15 лет - при условии выполнения требований к воде, правильной установке и своевременном обслуживании.

Сфера применения паяных пластинчатых теплообменников

·  Отопление, горячее водоснабжение, вентиляция: передающая станция для централизованного теплоснабжения от теплоэлектроцентралей отделение тепла подогрев производственной воды тепловые установки (центральные, солярные, половые, для бассейнов)

·  Климат: кондиционирование воздуха в помещениях и зданиях

·  Холодильная техника: конденсация и испарение

·  Применение для промышленных целей: машинное охлаждение, блочные тепловые электростанции, охлаждение гидравлических масел, охлаждение приводных масел, получение возвратного тепла, термическая процессная техника, подогрев топлива, охлаждение технологических жидкостей

Кроме того, возможно применение паяных пластинчатых теплообменников в фармацевтической, текстильной, металлургической и многих других отраслях промышленности.

Нельзя применять паяные пластинчатые теплообменники для аммиака и морской воды!

 

2.3.  Спиральные теплообменники

Из всех компактных теплообменников эта конструкция является наиболее уникальной. Типичная область их применения — это теплообмен между загрязненными потоками (пульпы, взвеси), содержащих различные механические примеси, волокна. Они с успехом используются в тех случаях, когда пространство для размещения ограничено. Основная отличительная черта спирального теплообменника заключается в его гидравлике. Постоянное изменение направления движения потока создает значительную турбулентность, более высокую, чем в кожухотрубных теплообменниках, что ограничивает количество и скорость образования отложений и накипи. При этом в спиральных аппаратах оба канала для жидкости, сваренные отдельно друг от друга, легкодоступны для очистки после снятия крышек и извлечения спирали. Применяются спиральные теплообменники и как конденсаторы. В этом качестве их работа весьма эффективна при установке аппарата непосредственно наверху колонны, что обеспечивает использование сил гравитации в процессе конденсации. В данном случае исключается необходимость установки сливного барабана и насоса, системы напорных и сливных линий, фундамента для основания. Снижение затрат на

вспомогательное оборудование позволяет в несколько раз сократить стоимость конденсатора.

 ОСНОВНЫЕ ПРИМЕНЕНИЯ

Конденсация и испарение. При использовании в качестве конденсаторов спи­ральные теплообменники демонстрируют свою универ­сальность. Они являются оптимальным решением особенно в случаях конденсации смешанных паров и парогазовых смесей с инертными газами. Идеальная для этих целей геометрия плоских концентрических однопроточных каналов обеспечивает максимальное извлечение продукта.
При конденсации возможно три варианта организации потоков: прямоток или противоток, если позволяют допустимые потери давления, поперечные потоки, а также их комбинация. Для полной конденсации пара, особенно с высокой кон­центрацией инертного газа, требуется достаточно боль­шое время взаимодействия с охлаждающей средой. Это может быть реализовано в спиральном теплообменнике.

Кроме того, конденсат и/или инертный газ могут пере­охлаждаться внутри одного и того же теплообменника. Причем пар свободно проходит сквозь щелевой спи­ральный канал перпендикулярно плоскости спирали, а охлаждающая среда движется по полностью закрытому спиральному каналу.

Важным преимуществом применения спиральных теплообменников в качестве конденсаторов явля­ется их конструкция, позволяющая присоединять теплообменники при помощи фланцев или сварки непосредственно сверху ректификационной колон­ны. Такое решение часто используется при реали­зации многоступенчатых конденсаторов. Установка спиральных теплообменников на колонну сущест­венно сокращает затраты на монтаж, так как сокращает до минимума работы по трубной обвязке.

 

Среды

Жидкости, суспензии, жидкости,

содержащие волокна и твердые

частицы, вязкие жидкости,

неньютоновские жидкости, включая

различные гидросмеси, растворы

полимеров и сточные воды, пары с

инертными газами и без них

Задачи

Охлаждение, нагрев, рекуперация

тепла, (вакуумная) конденсация,

испарение, термосифон, ребойлер

Применяются

в следующих

отраслях

промышлен-

ности

Нефтехимия, химия, пищевая и

фармацевтическая промышлен-

ность, производство растительного

масла, водоподготовка и водоочист-

ка, целлюлозно-бумажная, метал-

лургическая и горнодобывающая

промышленность

2.4.  Цельносварные пластинчатые теплообменники

Пластинчатый теплообменник цельносварный – новые возможности в эксплуатации, надежная герметизация.

Конструкция, которой обладает цельносварный пластинчатый теплообменник нашей компании, позволяет полностью отказаться от уплотнений, что способствует повышению надежности работы теплообменников, расширению пределов температур и давлений рабочих сред. Поверхность теплообмена теплообменников PW – это сваренные вместе профилированные пластины, которые образуют пакет пластин, заключенный в точно подогнанный кожух.

Цельносварный пластинчатый теплообменник PW производится в многоходовом варианте. В отличие от существующих теплообменников данного типа, распределительные устройства для многоходовых цельносварных теплообменников изготавливаются из металла, что способствует повышению надежности работы теплообменника. Направление потоков в пластинчатых теплообменниках PW выполняется по принципу противотока, прямотока и перекрестного потока. Для сред, содержащих загрязнения, крышка кожуха теплообменника изготавливается съемной, что позволяет вынимать пакет пластин для визуального осмотра и очистки.

Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.