рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Дипломная работа: Перспектива збільшення економічності Зуєвської теплової електростанції за допомогою вибору оптимального режиму роботи енергоблоку

Механічні забруднення - це засмічення конденсаторних трубок і трубних дощок тріскою, травою, землею, листами й т буд.

Ці забруднення носять сезонний характер і підсилюються навесні, восени.

Органічні забруднення - це відкладення найпростіших мікроорганізмів і водоростей, називаних біологічними обростаннями;

Сольові забруднення конденсаторів - це відкладення внутрішньої поверхні трубок накипу без термічні опори, що створюють більші, теплопередачі. Випадання накипу відбувається при охолодженні конденсаторів мінералізованою водою, що містить солі тимчасової твердості. Частина цих солей розпадаються з утворенням накипу на стінках трубок конденсаторів. Такі випадки звичайно створюються в оборотних системах водопостачання, де за рахунок випару й віднесення води росте солевміст охолодженої води.

5.3 Способи усунення забруднень

Ці способи можна класифікувати на хімічні, термічні, механічні. На Зуєвській ТЕС знайшли застосування хімічного очищення й термосушки конденсаторів.

Система циркуляційного водопостачання Зуєвської ТЕС замкнута із градирнями й бризкальними басейнами. Хімічний-хімічний-увідно-хімічний режим цирсистеми з обробкою 50% додаткової води вапнуванням і уведенням оксиетілідендіфосфонової кислоти без організованої продувки системи не забезпечує без накипну роботу конденсаторів турбін. У холодний період року конденсаторні трубки забруднюються накипом і органічними відкладеннями. У теплий період року основним забрудненням конденсаторів є накип. Для очищення конденсаторів на станції застосовуються кислотні промивання, у рік кожний конденсатор промивається два рази.

5.3.1 Хімічні методи очищення

5.3.1.1 Кислотне очищення

На Зуєвській ТЕС застосовується хімічне очищення конденсатора соляною кислотою HCL концентрації 3- 5 % для видалення накипу. При прокачуванні розчину усередині труб відбувається розчинення накипу з виділенням вуглекислого газу й з утворенням піни. Скупчення піни у верхній частині трубок перешкоджає доступу миючого розчину. Інтенсивно омивана розчином нижня частина труб піддається впливу соляної кислоти, що може привести до розчинення металу труб. Для зниження агресивності кислоти стосовно сплаву конденсаторних трубок у розчин уводять інгібітори ПБ-2 і КИ-1. Для зменшення утворення піни вводяться піногасники ПМС-400.

Заключними операціями є лужні й водяні промивання. Корозійна активність розчину, утворення піни й необхідність більших трудовитрат, є недоліками даного способу.

5.3.1.2 Експериментальні хімічні очищення

Професором В.Д.Безугловим були проведені наукові дослідження з розробки композицій для зняття органічних відкладень внутрішньої поверхні труб. Дослідження проводилися в хімічних лабораторіях і на діючому устаткуванні Зуєвської ТЕС. Розглядалися з метою знаходження оптимальної композиції для зняття відкладень наступні композиції: персульфат алюмінію, водяний розчин УПАВШИ в сполученні з неорганічними солями й композиція на основі комплексона.

З розчинних композицій найбільш оптимальним варіантом задовольняючим всім вимогам дослідників виявилися конструкція на основі комплексона (сполука 3% хлористий алюміній і 0,3% трилона Б)- ця композиція дозволяє знімати органічні відкладення разом із продуктами корозії мідно-нікелевого сплаву протягом 3 годин. Після обробки миючим розчином поверхня зразків труб залишається рівною й блискучою. Контроль знімання металу в процесі зняття відкладень дозволив визначити концентрацію іонів міді в промивному розчині 50-55 мг/л, концентрацію заліза 10-15 мг/л, що перебуває в межах припустимих значень 100мг/л, 50мг/л.

За результатами проведеної в хімічній лабораторії апробації колепозиція була рекомендована для промислового очищення конденсаторів від відкладень. Дана композиція може бути застосована як альтернатива кислотним промиванням на Зуєвській ТЕС.

Основними недоліками миючої композиції на основі ВПАВШИ є, то що при відмивання поверхня металу під відкладенням темних кольорів, тобто продукти корозії мідних трубок даної композицій не знімаються, і після проведення промивання конденсатора отримане незначне поліпшення експлуатаційних характеристик конденсатора (вакуум поліпшується на 1-2 мм арт.ст.). Причиною низької ефективності промивання композицій на основі ВПАВШИ, по-перше з'явилося сильне піноутворення в процесі промивання. Піноутворення при статичній обробці зразків труб у лабораторних умовах практично було відсутнє й з'являлося лише в динаміку промивання при промочуванні миючого розчину через труби конденсатора. По-друге, причиною низької ефективності миючої композиції в промислових умовах є той факт, що композиція дозволяє зняти органічні відкладення із внутрішньої поверхні труб, практично не розчиняючи стінок труб. Після промивання на стінках труб залишається шар продуктів корозії металу труб, що позначається на теплопровідності трубок і експлуатаційних характеристик конденсатора. Через вищевказані причини виникла необхідність коректування сполуки миючої композиції.

Основним же недоліком композиції на основі персульфату алюмінію було підвищене знімання металу труб у процесі зняття відкладень. Якщо нормою вважалася концентрація іонів міді в процесі відмивання менше 100 мг/л, те, використовуючи дану композицію, концентрація становить 4000-5000 мг/л.

Використання інгібіторів теж не було результату, і концентрація перевищувала норму й становила 300-5-мг/л. Тому цей композиційний матеріал не пройшов у подальше використання через значне знімання металу в процесі зняття відкладень.

5.3.2 Термічний метод

Через складну проблему забезпечення без накипного режиму системи циркуляційного водопостачання Зуєвській ТЕС і підтримки в задовільному стані конденсаторів турбін на електростанції було ухвалено рішення спробувати поліпшити експлуатаційний стан конденсаторів за допомогою виконання періодичних термічних чищень.

Принцип термічного сушіння полягає в тім, що для очищення трубок застосовується підігріте повітря. Цей метод може бути застосований для видалення відкладень, що володіють здатністю до розтріскування й відшаровування при висиханні. Сушіння засноване на тім, що гнітюче число мікроорганізмів, осідають на трубки конденсатора, при температурах 40-60 0С гинуть, у повітряному середовищі висихають і віддаляються. Таких температур можна досягти за рахунок тимчасового погіршення вакууму в конденсаторі.

На ТЕС термічні сушіння застосовуються тривалий час. Накопичений досвід і був наданий Зуєвській ТЕС виді технічної допомоги по випробуванню маловитратного способу періодичної термоочистки. Використання термосушки дозволяє підтримувати стан конденсаторів у задовільному стані, середньомісячні перевищення нормативного температурного напору рідко перевищують 1,0-1,5 0С.

У початковий період експлуатації застосовувалися кислотні промивання для боротьби з карбонатними відкладеннями. На електростанції також випробувалися кулькове очищення, обробка магнітною підлогою, термосушка. Одночасне використання всіх методів очищення не дозволяло оцінити ефект кожного окремо. Очевидно окремі фактори (не настільки часті термічні сушіння, а так само нестійкість роботи кулькових установок і поломки установки магнітної обробки води) приводили до утворення застарілих відкладень, що вимагало виконанню кислотних промивань.

Після відмови від кулькового очищення й магнітоочистки й збільшення числа термічних сушінь конденсаторів (до 3-4 сушінь кожного конденсатора на місяць) відпала необхідність у виконанні кислотних промивань, тому що термосушки підтримували в нормі чистоту конденсатора.

На Зуєвській ТЕС не на всіх блоках впроваджена система термосушки. І через частий вихід з ладу встаткування термосушки й не погоджених дій обслуговуючого персоналу по очищенню конденсатора, проведення термосушки на Зуєвській ТЕС не дозволяло повністю відмовитися від кислотних промивань, тобто кислотні промивання є в цей момент основним способом очищення конденсатора від відкладень на Зуєвській ТЕС.

5.3.3 Система кулькового очищення конденсатора

У період 1990-1991р. на блоці 1 Зуєвської ТЕС був розроблений і впроваджений проект системи ШОК (СРСР) для очищення трубок конденсатора від забруднення.

При випробуванні системи ШОК (СРСР) виявлений ряд недоліків:

·  Нестійка робота кулькової установки (мали місце недоробки й часті поломки устаткування) не дозволяла підтримувати чистоту трубок у постійній чистоті, у результаті утворилися дуже міцні відкладення (накип) і при повторних включеннях системи ШОК відбувалася закупорка кульками трубок конденсатора, що приводило до жалюгідних постійних наслідків.

·  Відсутність резервів кульок привело до відмови від роботи цих пристроїв і поновлення кислотних промивов.

Всі ці недоліки не дозволили прижитися системі ШОК (СРСР) на Зуєвській ТЕС у той час, тобто ШОК (СРСР) виявився не ефективним способом очищення для даної станції з даними видами відкладень.

Оскільки, як відзначено вище негативні впливи забруднення конденсаторів на вакуум досить істотні, а універсальних ефективних способів видалення забруднень практично ні, те найважливішим завданням експлуатації є запобігання забруднень. Необхідне вишукування ефективного способу очищення, з мінімальними витратами праці й по можливості без обмеження навантаження [8].

Як було сказано раніше, метод ШОК постійно вдосконалюється й модернізуються його елементи (фільтри, ежектора, кульки й т.д.). З появою на українському ринку фірми «Тапрогге» сповідаючий ШОК і, що досягла в цьому плані найбільшого успіху у світі, і звіти, що з'явилися, про роботу ШОК «Тапрогге» на Запорізької АЕС дають підстави вважати про появу оптимально-ефективного методу очищення конденсаторів, що дозволяють мінімізувати витрати на працю й працювати без зниження навантаження [25]. У цей момент на Зуєвській ТЕС впроваджується нова ВНУ (високонапірна установка) «Хаммельманн». За допомогою цієї установки виробляється очищення охолодних трубок конденсатора турбіни, маслоохолоджувачів і іншого теплообмінного устаткування ТЕС. Принцип роботи ВНУ «Хаммельманн» - очищення струменем води високого тиску, а також за допомогою спеціальної насадки, що одягається на шланг, сопла якої автоматично обертаються у двох площинах. Робота ВНУ (високонапірної установки) «Хаммельманн», полягає в тому, що трьома плунжерними насосами створюється високий тиск води, що подається в шланг. На кінці шланга одягнена спеціальна насадка сопла, який автоматично обертаються у двох площинах. Оператор рухає шланг по всій дині конденсаторної трубки. За допомогою педалі він перекриває й подає воду від плунжерних насосів ВНУ (високонапірної установки) «Хаммельманн» у шланг. Також застосовуються струминні пістолети високого тиску для роботи від 50 до 1000 бар.

Технічна характеристика ВНУ «Хаммельманн»:

Трехплунжерний насос;

Потужність електродвигуна - 380 У;

Тип -HDP - 160;

Тиск на вході - 5 бар;

Тиск на виході - 1500 бар;


5.4 Розрахунок реальної теплової схеми в експлуатаційному режимі при використанні в конденсаторі трубок марки МНЖ-5-1

Заміна латунних трубок на трубки марки МНЖ-5-1 дозволяє поліпшити теплопередачу, (коефіцієнт теплопровідності ) між стінками труб, у яких протікає охолодна вода й пором вступнику в конденсатор. Тим самим гарантує незмінний кінцевий тиск у конденсаторі Рк=0,0049 МПа, тобто використання стали МНЖ-5-1 у трубках конденсатора, дозволяє поліпшити Рк у конденсаторі із Рк=0,0067 МПа до Рк=0,0049 МПа (Рк=0,0067 МПа досягається використання латунні трубки в конденсаторі), [4].

Тому стан пари за ЦВТ і ЦНТ залишається незмінним і ідентичним значенням, розрахованим у пункті 3.2.

Через зміну кінцевого тиску Рк=0,0049 МПа відбувається зміна стану пари за ЦНТ, тому:

=2762-0,85*(2762-2240)=2318 кДж/кг;

тобто. змінюється стан пари у відборах ідуть зі ЦНТ, а це відбори №№ 7, 8, 9.

5.4.1 Визначення параметрів, що змінилися, пари по регенеративних відборах ЦНТ і заносимо дані в таблицю.

Таблиця 5.4.1 Параметри пари по регенеративних відборах

Номер відбору

Тиск пари у відборах, Р0i, МПа

Ентальпія пари у відборах, h0i, кДж/кг

Питомий об'єм у номінальному режимі, Viном, м3/кг

Питомий об'єм у реальному режимі, Vi, м3/кг

7 0,108 2752 1,591 1,72
8 0,0495 2634 2,892 3,324
9 0,0211 2538 6,311 7,364

Визначаємо тиск пари в підігрівниках з урахуванням втрати тиску в трубопроводах пари, що гріє, а також величину підігріву основного конденсату й величину недогріву. Втрати тиску визначаються по формулі:

, % (5.1)

Тиск у підігрівниках визначається по формулі:

, МПа (5.2)

Підігрів води визначається по формулі:

, 0С (5.3)

Недогрів у підігрівниках складе виходячи з формули:

, де  (5.4)

Таблиця 5.4.2 Розрахункові дані

№ підігрівника (відбору) Втрати тиску в трубопроводі Тиск пари в підігрівниках, МПа

Величина підігріву основного конденсату, Δti, 0С

Недогрів, Θi, 0С

номінальні, % реальні, % у розрахунковому режимі у проектному
ПНТ 3 №7 6 5,46 0,1021 22 3,63 4
ПНТ 2 №8 6 5,8 0,0466 25 0 0
ПНТ 1 №9 6 5,89 0,0199 24,5 4,55 5

5.4.2 Визначення часток пари, витрати й потужностей потоку

Всі отримані дані заносимо в таблицю 5.4.3

Таблиця 5.4.3 Розрахункові дані

Номер підігрівника

Частки відборів пари, αi

Витрата пари по відборах, Дi, кг/з

Потужність потоків, Ni, кВт

ПВТ 9

ПВТ 8

ПВТ 7

ПВТ 6

ПВТ 5

ПВТ 4

ПВТ 3

ПВТ 2

ПВТ 1

К

0,0544

0,1095

0,1357

0,0664

0,0253

0,0228

0,0223

0,0294

0,0369

0,5429

12,75

25,67

31,81

15,1

5,93

5,34

5,23

6,89

8,65

127,25

3548,6

8930,6

18829

12474,7

5561,5

2710,8

5868,6

8528

11605

196909,2

5.4.3 Визначення техніко-економічних показників

Таблиця 5.4.4 ТЕП блоки 300 МВт Зу ТЕС при використанні в конденсаторі трубок марки МНЖ-5-1

Величина Формула Результат

Кількість теплоти, що надходить на турбоустановку, кДж/кг

558140,92

ККД турбоустановки

0,4926

ККД станції брутто

0,4347

ККД станції нетто

0,3739

Питома витрата умовного палива (брутто), г. т.п. /кВтгод

282,95

Питома витрата умовного палива (нетто), г. т.п. /кВтгод

328,96

Питома витрата теплоти (брутто)

2,3

Питома витрата теплоти (нетто)

2,675

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.