рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


ПРОЕКТИРОВАНИЕ ГЛАВНОЙ ВЕНТИЛЯТОРНОЙ УСТАНОВКИ В УСЛОВИЯХ ШАХТЫ ДЗЕРЖИНСКОГО

Терриконик разбирается на строительство дорог. Участки земли где не

будут в ближайшее время вестись горные работы с нарушением земной

поверхности рекультивируются. Часть земельного отвода засеяна сосной,

тополем, карагачем (около 400га.).

2. Механический и электрический расчет вентилятора главного проветривания.

Вентиляторные установки в соответствии с ПБ должны иметь резерв по

производительности от 20% до 45% и обеспечивать реверсирование воздушного

потока не более чем за 10 минут, при этом производительность должна

составлять не мене 60% от нормальной производительности.

Правила безопасности требуют также, чтобы современные установки были

оборудованы двумя одинаковыми вентиляторами: одним рабочим и одним

резервным.

Компоновочная схема установки должна быть такой, чтобы утечки воздуха

или его подсосы были минимальными. Утечки воздуха должны не превышать 10%.

2.1. Исходные данные.

QВ = 352 м3/сек – производительность вентилятора;

Qш = 300 м3/сек – производительность шахтная;

Нсут мин =1150 Па – давление минимальное;

Нсут мак = 2300Па – давление максимальное;

2.2. Выбор вентилятора.

Для проектирования и выбора вентиляторной установки из проекта

реконструкции шахты берем данные о потребном расходе воздуха и давлениях в

шахте в различные периоды ее эксплуатации.

Выбор вентиляторной установки поризводим по аэродинамическим и

шумовым характеристикам.

По данным проекта вентиляции шахты составляем график изменения

расхода QВ и давления Нсут во времени на весь срок службы вентилятора.

График QВ и Нсут наносим на сводный график областей промышленного

использования вентиляторных установок главного проветривания.

После реконструкции шахты применяем вентиляторную установку ВОД – 50

в область промышленного использования которой вписался весь график

изменения Qш и Нсут шахты.

По аэродинамическим характеристикам установки определяем к.п.д., при

Нст min и Нстmax и мощьность двиготеля:

nmin - 0.68

nmax - 0.78

N – 2000 кВт

2.3. Характеристика вентиляционной сети.

Сводные графики областей промышленного использования вентиляторов:

Характеристика вентиляторной сети при максимальном давлении:

Rmin = Hуст min/Q2 =1150/3522=0,009281 (2.1)

Характеристика вентиляторной сети при минимальном давлении:

Rmax = Hуст max/Q2 =2300/3002=0,018563 (2.2)

Уравнение характеристик сети при min и max давлениях

Нуст min = 0,009281Q2.

Нуст min = 0,018563Q2.

В полученное выражение подставляем Q от 0,25 до 1,5 требуемой

производительности и получаем соответствующее значение.

Таблица 1 – Решение уравнения характеристики сети

|Показатели |0,25Q |0,5Q |0,75Q |Q |1,25Q |1,5Q |

|Q м^3/сек |88 |176 |264 |352 |440 |528 |

|Нуст min Па |71,875 |287,5 |646,875 |1150 |1796,875 |2587,5 |

|Нуст max Па |143,75 |575 |1293,75 |2300 |3593,75 |5175 |

На основании полученных данных на аэродинамической характеристике ВОД-

50 строим характеристики 1 и 2 вентиляционной сети.

2.4. Рабочие режимы

Через точку «а» и «в» заданных режимов и находим режим «с»

Qс1=362 Qс2=466 Hс1=1800 Hс2=3450

Прямая «а» и «в» пересекает кривую которая указывает на величину угла

установки лопаток Qк=30°, т,е. угол при котором начинается эксплуатация

вентилятора.

Rс1=Hс1/Qс12=1800/3622= 0,0137 (2.3)

Rс2=Hс2/Qс22=3450/4662= 0,0159 (2.4)

Hс1=0,0137358Q12: (2.5)

Hс2=0,0158872Q22: (2.6)

Таблица2 Режимы регулирования

|Показатели |0.25Q |0.5Q |0.75Q |Q |1.25Q |1.5Q |

|Qc1 |90.5 |181 |271.5 |362 |452.5 |543 |

|Hc1 |112.5 |450 |1012.5 |1800 |2812.5 |4050 |

|Qc2 |116.5 |233 |349.5 |466 |582.5 |699 |

|Hc2 |215.62 |862.5 |1940.63 |3450 |5390.63 |7762.5 |

Построенная характеристика позволяет установить ступени регулирования

рабочих режимов установки, на первой ступени угол установки лопаток равен

30°, при этом обеспечивается режим Q

2.5. Реверсирование вентиляционной сети

Реверсирование вентиляционной струи обеспечивается изменением

направления движения ротора вентилятора с одновременным поворотом лопаток

промежуточного спрямляющего аппарата. При этом производительность

вентилятора в режимах при H=292.16 м3/с, m=264 м3/с, 260.5 м3/с,

состовляет соответственно 87%, 75% и 74% от заданной производительности

Q=352м3/с

2.6. Расчет необходимой мощности электродвигателя

и определение расхода электроэнергии.

Мощность двигателя вентиляторной установки N,кВт определяется по

формуле:

N = Q*H / 100*n; (2.7)

Где: Q-подача турбомашины, м3/сек

Н-давление турбомашины, Па

n-к.п.д. турбомашины

На первой ступени регулирования требуемая мощность двигателя равна

830кВт

На первой ступени работы установки применяем двигатель:

СДН-17-41-16, с мощностью 1000кВт и скоростью 375 об/мин,

к.п.д.=0,94, cos =0,9, U=6000В.

Запас мощности равен:

RД = Nдв / Nmin = 1000 / 830 = 1,20482 (2.8)

Где: Nдв- Мощность двигателя

Nmin- Минимальная требуемая мощность

На второй ступени регулирования требуемая мощность двигателя равна

1577кВт. Для второй ступени принимаем двигатель мощностью 2000 кВт.

Запас мощности равен:

RД=Nдв / Nmin=2000 / 1577=1,26823

Где: Nдв- Мощность двигателя

Nmin- Минимальная требуемая мощность

Запас мощности принятого двигателя к расчетной мощности должен быть

не менее 10-12%.

Годовой расход электроэнергии Wг, кВт*час. определяется по формуле:

Wг=(Qср*Нср / Nд*nср*nн*nд*nс*nр)nчас*nдн, (2.9)

Где : Qср =Qшах+Qmin/2 –среднее значение производительности.

Hc=Hmax+Hmin/2 –среднее значение давления.

nср -средний к.п.д. вентиляторной установки.

nп –к.п.д. передачи от двигателя к вентилятору (0,9…0,95).

nд –к.п.д. двигателя (0,85…0,95).

nс - к.п.д. электрической сети (0,95).

nчас –число рабочих часов вентилятора в сутки (24).

nдн –числоо рабочих дней в году (365).

На первой ступени регулиования годовой расход электроэнергии равен:

WГ = 1079221,63 кВт*час

На второй ступени регулиования годовой расход электроэнергии равен:

WГ = 2558443,26 кВт*час

Дистанционное управление и контроль вентиляторной установки

осуществляется с помощью аппаратуры УКАВ.

2.7. Расчет и выбор кабельной сети высокого напряжения.

Сечение кабеля высокого напряжения определяется исходя из тока

нагрузки электродвигателя. Расчет производится по допустимому нагреву,

экономической плотности тока, термической устойчивости к токам к.з. и

допустимым потерям напряжения.

Для расчета сечения жилы кабеля по допустимому нагреву рабочим током

необходимо определить ток в кабеле Jк, А:

Jк = Nдв / 1,732 * Uн ; (2.10)

Nдв -номинальная мощность двигателя, кВт

Uн -напряжение сети, В

Jк = 2000 / 1,732 * 6 = 192,45 А.

Минимальное сечение жилы кабеля по допустимому нагреву принимаемое к

прокладке 50 мм2. Кабель прокладывается по воздуху.

Экономическое сечение жилы кабеля по допустимому нагреву рабочим

током Sэк, мм2

Sэк=Jк / Jэк , (2.11)

Jк -номинальный ток.

Jэк –экономически выгодная плотность тока, (2,5 А).

Sэ к = 192 / 2,5 = 76,8мм2

Принимаем кабель сечением 95мм2.

Минимальное сечение жилы кабеля по термической устойчивости к току

короткого замыкания: Smin, мм2

Smin=J*tф1/2/C, (2.12)

С –коэффициент, учитывающий конечную температуру нагрева жил и

напряжения кабеля.

Для кабеля с медными жилами и бумажной пропитанной изоляцией

напряжением 10 кв. С=145,

Для кабеля с резиновой или полихлорвиниловой изоляцией

С=122;

tф = tрм = tвм ; - фиктивное время тока короткого замыкания,

которое для шахтных кабельных сетей можно принимать равным реальному

времени срабатывания максимального реле (tрм) и высоковольтного выключателя

(tвм);

t = 0.05 + 0.1 = 0.15 с;

Jф – действующее значение установившегося тока короткого замыкания А

определяется по фактической мощности тока короткого замыкания на жилах ЦПП;

Jф=Sкз * ЦПП / 31/2 U =100000/31/2*6=9622,5 (2.13)

Где: SкзЦПП = 100000 КВА.- мощность тока короткого замыкания на

жилах ЦПП.

Sмин =9622.5*0.251/2/186 = 29.16 мм2.

Принимаем кабель сечением жилы 50 мм2,

Сечение жилы кабеля с учетом допустимых потерь напряжения;

Sдоп = 31/2 * Jк * L2 * соsV / Y * Uдоп; (2.14)

Где: L2 - длинна кабеля от ЦПП до двигателя вентилятора;

Y =50 м/ом мм – удельная проводимость жилы бронированного

кабеля.

Uдоп – допустимая потеря напряжения в высоковольтном кабеле от

ЦПП до двигателя;

Условно принимаем 2.5% от Uном;

Uдоп = Uном* 25 / 100 = 150 В. (2.15)

Отсюда:

Sдоп = 31/2*120*800*0.9 /50*150 = 20 мм2;

Из четырех значений сечений принимаем наибольшее –50 мм2.

Окончательно принимаем кабель СБН 3 * 95 .

2.8. Расчет и выбор КРУ.

Выбор высоковольтного КРУ производится по номинальному рабочему току

и напряжению по отключающей способности;

По электродинамической и термической устойчивости к токам КЗ;

Кроме того расчитывается и проверяется уставка минимального реле.

Номинальное напряжение сети известно 6 кв;

Номинальный рабочий ток высоковольтного КРУ Iном, А

Iном=Рдв / 31/2*Uc = 192.45; (2.16)

Где: Рдв - Мощность двигателя, кВт

Uc - Напряжение сети, В

Принимаем высоковольтное КРУ типа КСО-285 на номинальные токи

отключения 10 кА.

Расчетный ток отключения при коротком замыкании равен действующему

значению установившегося тока КЗ JФ и определяется по мощности КЗ на

жилах ЦПП J( = 9.62 кА.

Электродинамическая устойчивость высоковольтного КРУ

Электродинамическая устойчивость высоковольтного КРУ проверяется по

iу- ударному и эффективному ( полному ) Jф току короткого замыкания, А

Iу =Ку * 21/2*J(; (2.17)

Ку=1.3 – ударный коэффициент

Iу =1.3*21/2 *9.62 =17.69 кА.

Эффективное значение тока КЗ, кА

Jф =1.09 *9.62 =10.49 , (2.18)

Расчет термической устойчивости

Расчет термической устойчивости сводится к определению

соответствующего тока термической устойчивости.

JT=JФ*(tф / t)1/2=9.62*(0.25*0.15)1/2=12.4 кА. (2.19)

tф= 0.15 с.

Параметры принятого аппарата должны быть не менее расчетных.

Сравнение расчетных величин с параметрами принятого аппарата.

Таблица 3 Сравнение расчетных величин

|Расчетные величины |Параметры КСО-285 |

|Uс= 6кВ |Uн= 6кВ |

|Iнр=192.45 А |Iнр=400 А |

|Iф=9.62кА |Iф=20кА |

|Iу=17.69кА |Iмах=51кА |

|Iэф=10.49кА |Iфмах=31кА |

|It =12.4кА |It мах=20кА |

Ток уставки максимального реле высоковольтного комплексного

распределительного устройства определяется:

Iу ( (1.2 – 1.4) Iп / Кт , А (2.20)

Где 1.2 – 1.4 – коффициент, предотвращающий ложное срабатывание

максимального реле.

Кт=80 коэффициэнт трансформации трансформаторов тока.

Iпн = 1152А – номинальный пусковой ток двигателя;

Iу=(1,2-1.4)*1152/80=(17,28 – 20,16)

Выбираем уставку 20 А (Уставка выбрана из таблиц паспорта ячейки КСО-

285)

Iкз. На вводе в КРУ, кА

Iкз.=Sк/1,73* 6=9,622 (2.21)

Определяем сопротивление магистрали до шин ЦПП

rм=Uн/1,73*Iкз=6/1,73*9,622=0,36 Ом. (2,22)

Растояние от ячейки до двигателя вентилятора 350 м, пркладываем

кабель СБН 3х95.

Определяем активное сопротивление кабеля:

rк=R0*L1=0.91*0.35=0.06685 Ом (2.23)

Оределяем индуктивное сопротивление:

Xk=X0*L1=0,078*0,35=0,0273 (2.24)

Определяем полное сопротивление:

Jk=(r2k+Xk)0.5=(0.066852+0.02732)0.5=0.07220 Ом (2.25)

Определяем установившейся ток КЗ на шинах ЦПП

I(=6000/1,73*0,0766=45223,26 А (2.26)

Проверяем выбранную уставку

Iкз/Iу(1,5: (2.27)

9622/1600=6

Что удовлетворяет нашим условиям

30 Выбор разъединителя

Выбор разъединителя производится по номинальному току и напряжению.

Исходя из выше указанных условий выбираем разъединитель типа: РВЗ-6/400 с

внутренней вставкой

2.10. Выбор трансформатора для вспомогательного оборудования

Расчет ведется по коэффициенту спроса, для этого составляется таблица

в которую вносятся данные вспомогательного оборудования.

Таблица№4 Вспомогательное оборудование

|Наименование |Кол|Тип |Р двиг.|(Р двиг. |Jн, А |Uн, В |cos( |

|потребителей |. |двигателя |кВт. |кВт. | | | |

|1. Лебедка |3 |ВАО 42-2 |7,5 |22,5 |7 |380 |0,86 |

|2.Нагреватель |2 |ВАО 32-4 |3,0 |6,0 |6 |380 |0,86 |

|аппарат | | | | | | | |

|3.Спрямляющий |2 |ВАО 32-4 |3,0 |6,0 |6 |380 |0,86 |

|аппарат | | | | | | | |

|4.Тормоз эл. |2 |ВАО 32-4 |3,0 |6,0 |6 |380 |0,86 |

|Магнитный | | | | | | | |

|5. Вентилятор |10 |ВАО 12-2 |1,0 |10,0 |6 |380 |0,86 |

|обдува | | | | | | | |

Продолжение таблицы 4

|Наименование |Кол|Тип |Р двиг.|(Р двиг. |Jн, А|Uн, В |cos( |

|потребителей |. |двигателя |кВт. |кВт. | | | |

|6.Маслонасос |4 |ВАО 22-6 |1,1 |4,4 |4,5 |380 |0,86 |

|7. |2 |ВАО 22-6 |1,1 |2,2 |4,5 |380 |0,86 |

|Масло-нагреват| | | | | | | |

|ель | | | | | | | |

Расчетная мощность трансформатора находится по формуле:

Sраст.тр.=(Руст.*Кс /соs(срвз =57.1*0.5/0.7=40.8кВА. (2.27)

Где:. (Руст – установленная мощность потребителя.

Кс =0.5-коэффициэнт спроса.

соs(срввз-средневзвешенный коэффициэнт мощности.

Выбираем трансформатор мощностью 50 квт типа ТМ-50/6

Техническая характеристика трансформатора.

Таблица 5 Технические данные трансформатора

|Тип |Мощность,Ква|Номин. |Потери Вт |Uкз%|Х.х от Н. в |

| | |напряж. | | |% |

|ТМ-5016 |50 |Вн |Нн |Х.х.при |К.з.при |5.5 |7 |

| | |6.3 |0.525|Мн 350 |Нн=1325 | | |

2.11. Расчет сечения и типа кабеля для вспомогательного оборудования

Выбор сечения кабеля производится по току нагрузки:

I=Рн*1000/31/2Uн*соs(н;А (2.28)

Где: Рн- номинальная мощность потребителей, кВА;

Uн- номинальное напряжение сети, В;

соs(н- номинальный коэффициент мощности,В;

Составляем расчетную схему:

Расчетная схема №1

|1 |

|50м |

| |

| |

|2 |

|50м |

| |

| |

| |

|3 |

| |

|50м |

| |

| |

| |

|4 |

|50м |

ЛГРУ-10 ЛГРУ-10 ЛГРУ-10 ЛГРУ-

10

I1=I2=I3=I4=Рн*1000/31/2* U* соs(н =7.5*1000/1.73*380*0.86=1.3А

Расчетная схема№2

|5 |

|30м |

| |

| |

|6 |

|30м |

| |

|7 |

|30м |

| |

|8 |

|30м |

| |

|9 |

|30м |

| |

|10 |

|30м |

МНА МСА МН1 МН2 ЭГ

ЭН

I5=Рн*1000/31/2* U* соs(н =3*1000/1.73*380*0.86=5.3А

I6=Рн*1000/31/2* U* соs(н =3*1000/1.73*380*0.86=5.3А

I7=Рн*1000/31/2* U* соs(н =1.1*1000/1.73*380*0.86=1.9А

I8=Рн*1000/31/2* U* соs(н =1.1*1000/1.73*380*0.86=1.3А

I9=Рн*1000/31/2* U* соs(н =3*1000/1.73*380*0.86=1.3А

I10=Рн*1000/31/2* U* соs(н =1.1*1000/1.73*380*0.86=1.9А

Расчетная схема №3

|11 |30 м |

|30 м | |

| | |

| | |

|12 | |

|30 м | |

| | |

| | |

| | |

|13 | |

| | |

|30 м | |

| | |

| | |

| | |

|14 | |

I11=I 12=I 13=I 14=Рн*1000/31/2* U* соs(н =1*1000/1.73*380*0.86=1.7А

2.12. Выбор типа и сечения кабелей.

Таблица 6 Сводная таблица кабельной сети

|Наименование |Ток нагрузки, А |Сечение кабеля |Тип кабеля |

|участка кабеля | | | |

|1 |1.3 |6 |ГРШЭ3*6+1*4 |

|2 |1.3 |6 |ГРШЭ3*6+1*4 |

|3 |1.3 |6 |ГРШЭ3*6+1*4 |

|4 |1.3 |6 |ГРШЭ3*6+1*4 |

|5 |5.3 |4 |ГРШЭ3*6+1*4 |

|6 |5.3 |4 |ГРШЭ3*6+1*4 |

|7 |1.9 |4 |ГРШЭ3*6+1*4 |

|8 |1.9 |4 |ГРШЭ3*6+1*4 |

Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.