рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Разработка месторождений газоконденсатного типа

зоне) следовало поддерживать более высоким, чем рнк. По-видимому, в данном

случае оптимальным условием является рзаб > рнк (выпадающий в призабойной

зоне конденсат, несмотря на высокую насыщенность, остается малоподвижным

или вообще неподвижным в связи с крайне низкими фильтрационными

характеристиками среды).

Согласно проекту разработки с рециркуляцией газа, из десяти имеющихся

эксплуатационных скважин три предполагалось перевести под нагнетание. Объем

закачки намечался на уровне 450 — 600 тыс. м3/сут, темп отбора - 400 — 500

тыс. м3/сут. Около 20 % закачиваемого газа приобретается со стороны; этот

газ компенсирует уменьшение объема добываемого его количества за счет

выделения конденсата, расхода на топливо, а также изменения сжимаемости

газа по мере выделения конденсата.

При довольно низкой продуктивности скважин на месторождении Нокс-

Бромайд предполагалось широко использовать мероприятия по интенсификации

притока и, в первую очередь, гидроразрыв пласта. Успешное проведение в 1960

г. на скважинах Нокс-Бромайда гидроразрыва впервые в мире было осуществлено

на глубине 4600 — 4800 м. Применение процесса рециркуляции на этом

месторождении, несмотря на огромные трудности технического,

технологического и экономического характера, лишний раз подтверждает

большие возможности этого способа разработки.

В качестве интересного примера разработки газоконденсатного

месторождения с применением обратной закачки газа можно привести

месторождение Ла Глория, на котором поддерживалось давление в течение 8

лет. В то время это был один из самых больших проектов по закачке газа с

целью получения конденсата в штате Техас.

Залежь приурочена к структуре овальной формы. Продуктивная площадь

составляет 1070 га. Этаж газоносности около 100 м.

В процессе разведки залежи и эксплуатационного бурения было пробурено

около 40 скважин.

Глубина залегания продуктивного горизонта в центре структуры 1955 м.

Средняя мощность песчаника в этой зоне 10 м. Средняя пористость его 22,2 %,

проницаемость 0,52?10-12м2. Начальное пластовое давение 23,9 МПа,

температура 95 °С. Содержание связанной воды оценивалось в 20 %.

Запасы газа в залежи равнялись 3,95 млрд. м3 (при нормальных условиях).

Запасы конденсата (пропан+ ) составляли 1,07 млн. м3. Из этого количества

пентаны + составляли 0,639 млн. м3, изо- и нормальные бутаны 0,178 млн. м3

и пропан 0,252 млн. м3.

Закачка газа на месторождении Ла Глория началась в мае 1941 г. К этому

времени на месторождении было шесть продуктивных и две нагнетательные

скважины. В последующие годы число эксплуатационных скважин увеличилось до

восьми, а нагнетательных до четырех. В течение первых 4 лет из пласта в

среднем отбиралось 1415 тыс. м3/сут газа. В дальнейшем ввиду того, что

нагнетаемый сухой газ стал прорываться в эксплуатационные скважины, отбор

из пласта уменьшили до 595 тыс. м3/сут.

За все время нагнетания в пласт было возвращено 97 % добытого сухого

газа. Для обслуживания установки газ получали со стороны.

Благодаря малым темпам отбора и возврату практически всего добытого

сухого газа пластовое давление снизилось очень незначительно. Поэтому было

предотвращено выпадение конденсата в пласте и его потери. Это

подтверждается тем, что в продукции скважины, пробуренной в заключительной

стадии процесса в зоне, не охваченной нагнетанием сухого газа, содержание

конденсата не отличалось от начального.

В процессе закачки газа с целью контроля за его перемещением по пласту

из каждой скважины раз в три месяца отбирались пробы газа для определения

содержания конденсата.

Исследования показали, что в зоне, охваченной закачкой газа, коэффициент

вытеснения достигал 80 %. Коэффициент охвата при выбранном расположении

нагнетательных и эксплуатационных скважин по расчетам составлял 85 %.

Следовательно, в результате проведения процесса из пласта было добыто 68

% первоначально содержащегося конденсата. При последующей эксплуатации

пласта на истощение было добыто еще 20,8 % конденсата. Всего из пласта было

отобрано 88,8 % первоначально содержащегося конденсата (С5+).

Нагнетание сухого газа прекратили в середине 1949 г., когда содержание

конденсата в продукции резко уменьшилось.

При разработке отечественных газоконденсатных месторождений неоднократно

предпринимались попытки реализовать сайклинг-процесс, однако, как правило,

дело ограничивалось физическим или математическим моделированием, а также

проведением технико-экономических расчетов.

Одним из возможных объектов применения сайклинг-процесса было крупнейшее

в европейской части России Вуктыльское газоконденсатное месторождение. Во

ВНИИГАЗе были выполнены расчеты по извлечению конденсата из Вуктыльского

месторождения при закачке сухого газа на различных уровнях пластового

давления.

Общий коэффициент извлечения конденсата для Вуктыльского месторождения за

счет его растворения в сухом газе согласно расчетам не превышал 70 — 75 %,

т.е. по сравнению с разработкой на истощение коэффициент извлечения

конденсата мог быть увеличен на 30 — 35 %. Объясняется это значительным

утяжелением фракционного состава конденсата, выпавшего в пласте, в процессе

закачки сухого газа. Автор расчета Г.С. Степанова полагала, что достичь

такого увеличения коэффициента извлечения выгоднее при "меньшем" объеме

закачиваемого газа, т.е. при более высоком давлении. В этом случае и

фракционный состав добываемого конденсата будет тяжелее и, следовательно,

коэффициент извлечения его из газа на промысловых установках будет выше.

Если закачка газа осуществляется при давлении 5 — 6 МПа, то в газовую фазу

переходят фракции конденсата, выкипающие до 150—180°С (т.е. бензиновые

фракции), в количестве около 60 г/м. Низкие давления на устье

эксплуатационных скважин приводят к необходимости компримирования газа и

его последующего охлаждения. Для выделения конденсата в этом случае

необходимо осуществлять сепарацию при достаточно низких температурах — в

пределах минус 40 — минус 50 °С или применять процесс адсорбции. Если же

газ закачивать при пластовых давлениях выше 20 МПа, то для создания низких

температур в сепараторе можно использовать турбодетандеры.

Одним из авторов работы [52] была обоснована схема использования

турбодетандера при относительно низких пластовых давлениях (около 10 МПа).

При этом трубодетандер устанавливался перед дожимной компрессорной

станцией. В условиях Вуктыльского месторождения такая схема позволила

определенное время вести подготовку газа и конденсата к транспорту более

эффективно.

Основной недостаток, мешающий внедрению турбодетандеров для создания

низких температур, — это изменяющийся перепад давления на турбодетандере

при снижении давления в залежи. Если закачка газа будет осуществляться в

течение длительного времени, турбодетандеры экономически окажутся

значительно выгодней, чем холодильные установки. Для максимального

извлечения конденсата из добываемого газа следует применять процессы

низкотемпературной масляной адсорбции или короткоцикловой адсорбции. Тогда

потери конденсата будут минимальными и эффект от закачки сухого газа в

пласт будет наибольшим.

Как известно, сайклинг-процесс на Вуктыльском месторождении не был

осуществлен и с 1968 г. оно разрабатывалось на режиме истощения. Основными

причинами для отказа от возврата газа в пласт стали опасения низкого охвата

пласта (не более 20 %) нагнетаемым агентом в условиях резко неоднородного

трещиноватого коллектора; решение остановиться на способе разработки более

экономичном с точки зрения материальных и финансовых затрат; отсутствие в

стране налаженного производства высоконапорного компрессорного и

трубопроводного оборудования; психологическая неподготовленность

специалистов вести разработку на ином, нежели истощение, режиме отбора

запасов.

Открытие уникальных по запасам газоконденсатных месторождений с высоким

содержанием в газе ценных высокомолекулярных углеводородных компонентов

(табл. 3) побудило газовиков России, а также Казахстана вновь обратиться к

проблеме разработки ГКМ с поддержанием пластового давления. Были выполнены

технико-экономические оценки и подготовлены проектные решения, согласно

которым реализация сайклинг-процесса на Уренгойском, Карачаганакском и

других ГКМ обеспечивала увеличение конденсатоотдачи продуктивных пластов не

менее чем на 10 %. Практически, однако, до настоящего времени нет

уверенности в том, что предусмотренное проектами разработки этих объектов

нагнетание сухого газа будет осуществлено. Кроме тех причин, что

воспрепятствовали внедрению сайклинг-процесса на Вуктыльском месторождении,

в последние годы стала играть важную роль еще одна — экспортные

обязательства по поставкам крупных объемов природного газа в европейские

страны при одновременном снижении финансируемых потребностей в газе.

И все же в странах СНГ несколько лет назад удалось довести до

практического осуществления один проект разработки ГКМ на режиме сайклинг-

процесса, хотя и с задержкой во времени и при давлении в пласте, меньшем

проектного, — на Новотроицком месторождении на Украине. Проект был

подготовлен специалистами ВНИИГАЗа и УкрНИИгаза под руководством С.Н.

Бузинова, И.Н. Токоя, Е.И. Степанюка.

Новотроицкое газоконденсатное месторождение открыто в 1966 г., когда был

получен приток газа с конденсатом из скв. № 4, и введено в разработку на

истощение в 1974 г.

Газоконденсатная залежь приурочена к отложениям нижнего карбона

горизонта В-23 визейского яруса, залегает в интервале глубин 3280 — 3390 м.

Начальные запасы газа утверждены в объеме 11 620 млн. м3, конденсата 5200

тыс. т (извлекаемые 2590 тыс. т). Начальное содержание конденсата в

отсепарированном газе 454,5 г/м3, начальное пластовое давление составляло

35,6 МПа. Средняя эффективная мощность продуктивного пласта 16 м, средняя

проницаемость 1,02-10-12 м2.

К моменту подсчета запасов газа (1973) считалось, что Новотроицкое

поднятие достаточно детально изучено; оно представлялось асимметричной

брахиантиклинальной складкой, разделенной единственным тектоническим

нарушением, подсечевным скв. 4, на два блока (северо-западный и юго-

восточный). Эти представления о геологическом строении были приняты за

основу при составлении проекта разработки 1976 г.

Бурение эксплуатационных скважин внесло существенное изменение в

представление о геологическом строении залежи. В 1984 г. при анализе

разработки месторождения был пересмотрен весь имеющийся геологический

материал и выполнены новые структурные построения. Для более уверенной

корреляции разрезов скважин, помимо стратиграфических границ внутри

стратиграфических комплексов, были выбраны хорошо выдержанные по площади

реперные пласты, что позволило более детально проследить характер изменения

мощностей в разрезах скважин и точнее определить глубины подсечения ими

тектонических нарушений.

На основании новых для того времени представлений о строении

Новотроицкого месторождения юго-восточная часть залежи характеризовалась

относительно простым строением. Северо-западная часть складки отличалась

вместе с тем очень сложным блоковым строением, которое, несмотря на большое

число пробуренных скважин, оставалось не до конца выясненным. Блоковое

строение в этой части месторождения затрудняло размещение системы

нагнетательных и эксплуатационных скважин.

Таким образом, геологическое строение Новотроицкой залежи оказалось

значительно сложнее, чем предполагалось по результатам разведочных работ

(когда было пробурено 16 скважин). По данным бурения эксплуатационных и

нагнетательных скважин был выявлен ряд нарушений, блоков и локальных

поднятий в пределах площади газоносности.

За период разработки месторождения на истощение (1974— 1979 гг.) из

месторождения было добыто 2144 млн. м3 газа и 658,2 тыс. т конденсата, при

этом пластовое давление снизилось на 7,5 МПа. Отбор газа был на 320 млн. м3

выше проектного. Содержание конденсата в пластовом газе уменьшилось до 317

г/м3 а потери его в пласте составили около 1500 тыс. т.

В связи с отставанием обустройства в период 1979— 1981 гг. месторождение

находилось в консервации. За это время вследствие проявления водо-'

напорного режима пластовое давление в залежи увеличилось с 27,4 до 28,1

МПа. Подъем ГВК составил около 7 м.

Закачка сухого газа в пласт была начата в июне 1981 г. Добыча сырого

газа осуществлялась из четырех скважин, а закачка — в две нагнетательные

скважины № 30 и 36. Приемистость нагнетательных скважин в начале закачки

соответствовала проектной. Однако впоследствии было отмечено существенное

ее снижение, обусловленное загрязнением призабойных зон скважин

компрессорным маслом. Поэтому начали проводить периодическую продувку

нагнетательных скважин в газопровод. При этом приемистость скважины

улучшалась, но полного восстановления не происходило.

На основе новых представлений о геологическом строении месторождения

были пересмотрены первоначальные проектные решения по числу нагнетательных

и эксплуатационных скважин, объемам добычи и закачки газа. Объем закачки

газа был установлен в количестве 230 млн. м3.

В 1984 г. был проведен детальный анализ обводнения залежи. С помощью

математического моделирования воспроизведена 9,5-летняя история разработки

месторождения, определены эффективные параметры водоносного пласта.

Сопоставляя геологические построения с данными материального баланса,

оценили среднюю остаточную газонасыщенность обводненного порового объема —

0,54, причем 7 % перового пространства занято выпавшим конденсатом. Столь

высокое значение средней остаточной газонасыщенности свидетельствовало о

том, что за фронтом обводнения газ оставался не только в защемленном

состоянии. Подъем ГВК составил около 30 м.

Динамика добычи газа и конденсата приведена в табл. 1.21. На 01.09.87 из

месторождения было извлечено 3948 млн. м3 газа и 1169 тыс.т конденсата.

Суммарная добыча конденсата за период сайклинг-процесса составила 510,8

тыс. т, закачка сухого газа в пласт — 1443 млн.м3.

Сравнение двух технологий — сайклинг-процесса и истощения — было

проведено по добыче конденсата при условии одинаковой накопленной добычи. В

табл. 1.21 приведены данные по дополнительной добыче конденсата при

сайклинг-процессе по отношению к разработке залежи на истощение. Вариант

истощения был рассчитан с найденными по истории разработки эффективными

параметрами водоносного пласта.

. Это было обусловлено образованием "конденсатного вала" вблизи забоев этих

скважин в результате продвижения контурных вод. Продукция скв. 34 в течение

1984—1985 гг. постепенно осушалась (до 166 г/м3). Во второй половине 1986

г. к ее забою также подошел "конденсатный вал", в связи с чем удельный

выход конденсата повысился до 250 г/м3. Более всего оказалась осушена

продукция скв. 13: доля сухого газа составляла 79 %.

Подготовка газа для закачки в пласт осуществлялась методом

низкотемпературной сепарации с охлаждением газа пропановой холодильной

установкой. Газоконденсатная смесь из эксплуатационных скважин поступала на

УКПГ, где в сепараторах первой ступени при давлении 12,5 МПа и температуре

298 К происходило отделение капельной жидкости от газа. После этого газ

подавался в теплообменник, где охлаждался за счет холода, получаемого от

пропановой холодильной установки и при давлении 10,5 — 11,0 МПа направлялся

в низкотемпературный сепаратор второй ступени, где происходило разделение

сконденсировавшейся жидкости и газа. Отсепарированный газ при температуре

263 — 258 К и давлении 10,5—11,0 МПа содержал 30 — 32 г/м3 конденсата. С

целью повышения извлечения конденсата технология низкотемпературной

подготовки газа была дополнена абсорбцией в потоке. В качестве абсорбента

был использован тяжелый конденсат I ступени сепарации. Это дало возможность

дополнительно извлечь 10—17 г/м3 конденсата из газа, закачиваемого в пласт.

Закачка газа в пласт осуществлялась тремя газомоторными компрессорами

10ГКНА 1/(100-12)-(200-275) производительностью 480-620 тыс. м3/сут.

каждый, работающими параллельно. В процессе эксплуатации компрессорной

станции был выявлен и устранен ряд факторов, снижающих работоспособность

компрессоров: заменены втулки компрессорных цилиндров; изменена конструкция

поршней и сальников штока; удвоена подача лубрикаторной смазки поршней,

заменена запорная арматура обвязки компрессоров на импортную; установлены

фторопластовые фильтры конструкции УкрНИИгаза на входе газа в компрессоры и

на линиях нагнетания в скважины; изготовлено и установлено общестанционное

загрузочное кольцо для обкатки компрессоров после ремонтов, предусмотрены

дренаж для удаления жидкости из обвязки узла продувки всасывающего

коллектора, а также буферных емкостей; произведен ремонт фундаментов и

опор.

Экономическая оценка разработки Новотроицкого месторождения показывала

высокую себестоимость добычи газа и конденсата. Однако опыт реализации

проекта весьма ценен для газопромысловиков.

Анализ разработки Новотроицкого ГКМ позволил сделать следующие выводы.

1. Новотроицкое месторождение характеризуется сложным геологическим

строением, выявленным в процессе осуществления сайклинг-процесса и

существенно повлиявшим на первоначальные проектные решения. Для обеспечения

разработки месторождения в режиме сайклинг-процесса необходимо было

провести детальную разведку залежей как разведочными, так и опережающими

эксплуатационными скважинами.

2. На месторождении сайклинг-процессу предшествовала разработка в режиме

истощения. В условиях проявления водонапорного режима это привело к

защемлению значительных количеств газа за фронтом вытеснения. Наиболее

высокий технологический и экономический эффект мог быть получен при

применении сайклинг-процесса без предварительного отбора газа.

3. При подготовке проекта необходимо предусматривать обвязку

нагнетательных и эксплуатационных скважин по одной схеме — как на

нагнетание, так и на отбор. Это позволит осуществлять оперативное

регулирование разработки, очистку забоя скважин и т.д.

4. При проектировании установок подготовки газа для осуществления

сайклинг-процесса в зависимости от конкретных условий и возможностей

необходимо:

а) применять установки с низкотемпературной абсорбцией при давлении

около 11,0 МПа;

б) использовать установки низкотемпературной сепарации при давлении

максимальной конденсации 5,5 — 6,5 МПа с турбодетандером с последующим

поджатием газа до давления 11,0 МПа компрессором, находящимся на одном валу

с турбодетандером (наиболее экономичный вариант);

в) устанавливать перед компрессорной станцией фильтры для очистки газа

от твердых примесей, а после компрессорной станции — маслоуловители для

защиты нагнетательных скважин от масла, попадающего в газ при его

компримировании.

5. Разработка Новотроицкого месторождения в режиме сайклинг-про-цесса

при существовавших оптовых ценах предприятий на газ и конденсат являлась

убыточной.

Для газоконденсатных месторождений, на которых планируется внедрение

сайклинг-процесса, необходимо устанавливать льготные индивидуальные оптовые

цены предприятий.

Автор настоящей работы полагает, что возможности сайклинг-процесса

изучены и используются недостаточно. Это касается, например, области

применения данной технологии при умеренных и низких пластовых давлениях, в

частности, на завершающей стадии разработки газоконденсатных месторождений,

а также особенностей ее применения на месторождениях с разными составами

пластовых углеводородных смесей.

В связи с этим были предприняты широкомасштабные теоретические и

экспериментальные исследования.

Был изучен механизм и эффективность углеводородоотдачи при закачке в

газоконденсатную залежь сухого газа на различных стадиях истощения пласта.

С использованием метода, основанного на концепции давления схождения, и

уравнения состояния Пенга — Робинсона проведено математическое

моделирование природной газоконденсатной системы. В качестве примера были

взяты термобарические условия и состав углеводородной смеси, характерные

для одного из месторождений Днепрово-Донецкой впадины (Западного свода

Березовского газоконденсатного месторождения). Углеводородная система имела

следующий начальный состав: С, — 81,2 %; С2 — 7,32 %; С3 - 3,13 %; С4 -

1,12 % и С5 - 6,14 %, углеводороды С5+ моделировались тремя фракциями: Ф, —

18 % (Ммол = 107); Ф2 — 79 % (Ммол = = 161)иФ3 = 3% (Ммод = 237). Начальные

пластовые давление и температура равнялись соответственно 51 МПа и 113 °С.

Были получены данные по динамике конденсатогазового фактора (КГФ) и

насыщенности перового пространства жидкой фазой. Давление начала

конденсации практически равняется начальному пластовому давлению. Начальный

КГФ составляет 420 г/м3. При давлении максимальной конденсации 7,7 МПа КГФ

= 45 г/м3. Максимальное значение насыщенности перового пространства жидкой

фазой достигает 12 %. Коэффициент извлечения углеводородов С5+ при

истощении до 2 МПа при данных пластовых термобарических условиях не

превышает 32 %.

Процесс закачки в пласт сухого газа был рассмотрен при следующих

пластовых давлениях: 22; 16; 7,7; 6 и 3 МПа. При давлениях 22 и 16 МПа

система находится на ветви ретроградной конденсации (рис. 1,35, а).

Давление максимальной конденсации составляет 7,7 МПа, и при давлениях 6 и 3

МПа система расположена на ветви прямого испарения. Конден-сатогазовый

фактор пластового флюида при давлениях 16 и 3 МПа одинаков.

Методика расчета процесса вытеснения сухим газом пластовой системы

основана на решении дифференциальных уравнений многокомпонентной фильтрации

Страницы: 1, 2, 3, 4, 5, 6


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.