рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Курсовая работа: Проектирование и исследование механизмов поршневого насоса

Курсовая работа: Проектирование и исследование механизмов поршневого насоса

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Сарапульский политехнический институт (филиал)

Ижевского государственного технического университета

Кафедра ТММСиИ

Дисциплина "Теория механизмов и машин"

Пояснительная записка к курсовому проекту

на тему "Проектирование и исследование механизмов поршневого насоса"

Выполнил: студент группы 512

Коробейников С.Н.

Проверил: Урбанович В.С.

Сарапул 2010 г.


Содержание

Введение

1. Техническое задание

1.1 Краткое описание работы механизма

1.2 Исходные данные

2. Исследование рычажных механизмов

2.1 Метрический синтез механизма

2.2 Структурный анализ механизма

2.3 Кинематическое исследование механизма

3. Проектирование кулачкового механизма

3.1 Построение диаграмм движения толкателя

3.2 Определение минимального радиуса кулачка

3.3 Профилирование кулачка

4. Проектирование зубчатой передачи

4.1 Расчет привода машины

4.2 Расчет внешнего неравносмещенного зацепления с прямыми зубьями

4.3 Качественные показатели зацепления

5. Силовой расчет механизма

6. Расчет маховика

Список литературы


Введение

Развитие современной науки и техники неразрывно связано с созданием новых машин, имеющих целью повышение производительности и облегчение труда людей, а также обеспечение средств исследования законов природы и жизни человека.

Целью создания машины являются увеличение производительности и облегчение физического труда человека путем замены человека машиной. Созданные человеком машины могут управлять производственными и другими процессами по определенным, заранее составленным программам и в некоторых случаях автоматически обеспечивать процесс с оптимальными результатами. [1]

Основной целью курсового проектирования является подготовка к комплексному проектированию определенной машины или механизма. Выполняя курсовой проект, студенты знакомятся с общими принципами исследований кинематических и динамических свойств механизмов методами проектирования их. При курсовом проектировании начинается профессиональное становление будущего инженера – приобретение опыта самостоятельного решения задач, связанных с производственной деятельностью. [2]


1. Техническое задание

1.1 Краткое описание работы механизма

Поршневой насос принадлежит к насосам объемного типа и характеризуется наличием одной или нескольких камер, в которых возвратно-поступательно двигаются поршни, сообщая перекачиваемой жидкости или газу избыточное давление. Изоляция камеры от полостей всасывания и нагнетания в процессе работы осуществляется с помощью впускного и нагнетающего клапанов. Особенностью поршневых насосов является периодический, пульсирующий характер подачи, обуславливающий неравномерность давлений и подачи по времени.

Для поршневых насосов наряду с кривошипно-ползунными механизмами для увеличения производительности применяются кулисные механизмы. В задании поршневой насос состоит из кулисного О2АО3 и шатунного ОВС механизмов (рис. 1а). На ведущий вал О2 крутящий момент передается от вала электродвигателя через привод насоса (рис. 1б). Рабочим ходом является процесс нагнетания. Нагнетание происходит медленнее, чем всасывание рабочего тела, соответственно этому необходимо выбирать направление вращения кривошипа О2А.

Кулачковые механизмы служат для открывания всасывающего и нагнетающего клапанов. В задании необходимо спроектировать кулачковый механизм, показанный на рис. 1в, который служит для нагнетания рабочего тела. Кулачки получают вращение от вала кривошипа через ременную передачу с передаточным отношением 1 (на рис. не показана). Диаграммы ускорений толкателя даются на рис. 1г. [3]


Рис. 1

1.2 Исходные данные

Расстояние между стойками

ход ползуна H = 0,11 м;

отношения

конструктивный угол III звена ν = 80°;

коэффициент изменения скорости хода К = 2;

длина толкателя ℓED = 0,22 м;

полный угол размаха толкателя βmax = 19°;

минимальный угол передачи движения γmin = 45°;

числа зубьев колес Z1 = 21, Z2 = 47, Z6 = 12, Z7 = 18;

модули m1 = 5 мм; m2 = 5,5 мм;

коэффициент неравномерности хода δ = 1/3;

погонный вес q = 120 H/м;

межосевое расстояние

частота вращения двигателя nдв = 1530 об/мин;

передаточное отношение u1-5 = 15,85;

зацепления Z6 – Z7 неравносмещенное;

сила полезного сопротивления Рпс = 158 Н;

коэффициент смещения Х выбирать из условия обеспечения заданного межосевого расстояния.

Примечания:

1. Фазовые углы кулачкового механизма для нагнетающего клапана φу = 0,5 φрх, φд = 0,2 φрх, φв = 0,6 φхх.

2. Веса звеньев G3 = q∙ℓ3, G4 = q∙ℓ4, G5 = λ∙G4.

3. Моменты инерции вычисляются по формуле  где g – ускорение свободного падения.

4. Приведенный момент сил движущих – величина постоянная.


2. Исследование рычажных механизмов

2.1 Метрический синтез механизма

Задачей метрического синтеза является определение размеров механизма, удовлетворяющих некоторым заданным условиям. В нашем случае задан коэффициент изменения скорости хода К.

,

где θ – острый угол между крайними положениями кривошипа.

Отсюда получаем

;

.

Определяем недостающие длины звеньев. Решение задачи проводим аналитически. Рассмотрим два крайних положения механизма (рис. 2а), для которых .

Прямоугольные треугольники ∆О2А0О3 и ∆О2А'0О3 равны по двум катетам и гипотенузе (катеты О2А0 = О2А'0 = О2А, гипотенуза О2О3 – общая).

;

;


Рис. 2

В нашем случае получаем

Определяем длину кривошипа О2А

Длины звеньев ВО3 и ВС определяем из геометрических соображений по схеме, изображенной на рис. 2б.

C0C'0 = H = 0,11 м.


Пусть ВС = х, С0О3 = у; тогда ВО3 = λ·х = 0,32х, С'0О3 = у + 0,11.

Используя теорему косинусов получаем систему уравнений

Решая систему, получаем х = 0,367 м, у = 0,280 м.

Отсюда ВС = 0,367 м, ВО3 = 0,32·0,367 = 0,117 м.

Таким образом, определены длины всех звеньев механизма

2.2 Структурный анализ механизма

Рис. 3

Количество подвижных звеньев механизма, изображенного на рис. 3а, равно n = 5. Звенья соединяются между собой при помощи пяти вращательных пар (0-1, 1-2, 0-3, 3-4, 4-5) и двух поступательных пар (2-3 и 5-0). Все пары являются парами V класса. Степень подвижности механизма вычисляем по формуле Чебышева

W = 3n – 2p5 – p4 = 3∙5 – 2∙7 = 1.

Ведущее звено – кривошип О2А (рис. 3б). Ведомая часть состоит из двух двухповодковых групп Ассура: звенья 2 и 3 образуют группу II класса, 2-го порядка, 3-го вида (рис. 3в), а звенья 4 и 5 группу II класса, 2-го порядка, 2-го вида (рис. 3г).

Формула построения механизма может быть записана в следующем виде:

2.3 Кинематическое исследование механизма

Выбираем масштаб μℓ = 0,00125  и вычерчиваем кинематические схемы механизма в 12-ти положениях. Для всех положений механизма строим планы скоростей и ускорений. Масштаб планов скоростей выбираем μv = 0,01 , планов ускорений – μа = 0,05 . Рассмотрим построение плана скоростей на примере 1-го положения механизма (рис 4а).

Рассчитываем скорость точки А1 кривошипа О2А


Рис. 4

Из произвольно выбранной точки Р (рис. 4б), принимаемой за полюс, откладываем отрезок  перпендикулярно О2А, изображающий скорость точки А1 кривошипа. Скорость точки А3 можно рассматривать как геометрическую сумму переносной вращательной скорости точки А1 кривошипа и относительной поступательной скорости точки вдоль кулисы:

Из точки а1 плана скоростей проводим прямую параллельно О3А, а из полюса Р – прямую, перпендикулярную О3А, и в точке их пересечения ставим букву а3. Отрезок Ра3 изображает в масштабе μv скорость точки А3 кулисы, а отрезок а1а3 – относительную скорость точки А, вдоль кулисы

Отрезок Pb на плане скоростей, соответствующий скорости точки В, находится из пропорции

 или

и проводится так, что .

Скорость точки С определяется построением геометрического равенства

Отрезок Рс изображает в масштабе μv скорость точки С поршня, а отрезок bc – относительную скорость точки С, вокруг точки В

Построим для того же положения механизма план ускорений (рис. 4в).

Рассчитываем ускорение точки А1 кривошипа О2А (нормальное ускорение)

Из произвольно выбранной точки π, принимаемой за полюс плана ускорений, откладываем отрезок  параллельно О2А, который будет изображать нормальное ускорение кривошипа. Так как точка А3 кулисы участвует в переносном движении вместе с кривошипом и относительном вдоль кулисы, то абсолютное ускорение тоски А3 будет состоять из переносного, относительного и кориолисова ускорений

Истинное значение кориолисова ускорения равно

,

а величина отрезка, изображающего его на плане ускорений

Чтобы определить направление кориолисова ускорения, нужно вектор относительной скорости  повернуть на 90° в сторону вращения кулисы, в нашем случае – по часовой стрелке.

С другой стороны ускорение точки А3 можно определить из равенства

Истинное значение  определяем по формуле


а величину отрезка, изображающего его на плане ускорений

Таким образом, остаются неизвестными величины двух ускорений  и , которые определяем из построения плана ускорений. Из точки k плана ускорений проводим прямую параллельно О3А, а из точки n – прямую, перпендикулярную О3А, и в точке их пересечения ставим букву а3. Отрезок πа3 изображает в масштабе μа ускорение точки А3 кулисы, отрезок nа3 – ускорение , а отрезок kа3 – ускорение

Отрезок πb на плане скоростей, соответствующий скорости точки В, находится из пропорции

 или

и проводится так, что .

Величина ускорения точки С определяется графическим решением векторного уравнения


Истинное значение ускорения  определяем по формуле

а величину отрезка, изображающего его на плане ускорений

Тангенциальная составляющая  известна только по направлению (перпендикулярно ВС), а абсолютное ускорение точки С направлено по вертикали. Величины этих векторов определяются построением

Аналогично строим планы скоростей и ускорений для остальных положений механизма. Результаты всех замеров и расчетов с планов скоростей занесены в таблицу 1, с планов ускорений – в таблицу 2.

Таблица 1.

Замер О3А,

мм

Замер ра3,

мм

Замер а1а3,

мм

Расч. pb,

мм

Замер bc,

мм

Замер pc,

мм

Расч. Vc,

м/с

0 97,0 0,0 47,2 0,00 0,0 0 0,000
1 125,2 21,1 42,2 15,78 11,7 10,51 0,105
2 148,2 35,7 30,9 22,54 11,4 16,51 0,165
3 162,9 44,3 16,2 25,46 9,1 21,22 0,212
4 168,0 47,2 0,0 26,30 4,8 24,39 0,244
5 162,9 44,3 16,2 25,46 0,1 25,44 0,254
6 148,2 35,7 30,9 22,54 3,8 23,44 0,234
7 125,2 21,1 42,2 15,78 4,7 16,57 0,166
8 97,0 0,0 47,2 0,00 0,0 0 0,000
9 69,4 27,9 38,1 37,60 10,3 43,11 0,431
10 56,0 47,2 0,0 78,89 14,4 73,16 0,732
11 69,4 27,9 38,1 37,60 21,7 25,5 0,255

Таблица 2

Страницы: 1, 2, 3, 4, 5


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.