рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Курсовая работа: Проектування технологічного оснащення для оброблення деталі "Кронштейн 6464.4700.015"

Курсовая работа: Проектування технологічного оснащення для оброблення деталі "Кронштейн 6464.4700.015"

Національний університет “Львівська політехніка”

Кафедра технології машинобудування


Курсовий проект

На тему:

Проектування технологічного оснащення для оброблення деталі “Кронштейн 6464.4700.015”

Розробив:----------

Перевірив:---------

Львів 2009


Зміст

Вступ

Розділ 1

1.1. Розроблення технологічного спорядження для оброблення поверхні 3 в розмір 15h14-0,43 мм (згідно креслення деталі - “Кронштейн 6464.4700.015”)

1.2. Аналіз вихідних даних для проектування верстатного пристрою

1.3. Службове призначення верстатного пристрою

1.4 Розрахунок сумарної похибки, вибір раціональної схеми встановлення і установних елементів пристрою

1.5. Структурний аналіз і синтез компоновок пристрою, вибір оптимальної компоновки пристрою та принципу дії

1.6. Остаточний розрахунок пристрою на точність

1.7. Розрахунок сили затиску, параметрів приводу

1.8. Спеціальні види розрахунків

1.9. Економічне обґрунтування ефективності використання пристрою

1.10 Опис конструкції та роботи пристрою

Розділ 2.

2.1.Розроблення пристрою для контролю перпендикулярності поверхні 3 відносно отвору 6 (база Б) (згідно креслення деталі - “Кронштейн 6464.4700.015”)

2.1.1 Аналіз конструкцій контрольного пристрою та вибір раціоанльної

2.1.2. Розрахунок контрольного пристрою з гідро-пластмасою

2.2. Розрахунок контрольного пристрою на точність

2.3. Опис конструкції та роботи контрольного пристрою

2.4. Розроблення транспортного засобу для транспортування оброблюваних деталей на дільниці механічного оброблення

2.5 Добір і проектування допоміжних інструментів

Література


Вступ

На сьогоднішній день машинобудування належить до найпотужніших галузей народного господарства, забезпечує високу якість і точність виробів взагалі та оброблюваних поверхонь деталей машин зокрема. Його ефективність досягається збільшенням питомої ваги автоматизованого устаткування, роботизованих систем, споряджених мікропроцесорною чи обчислювальною технікою, гнучких автоматизованих комплексів і гнучких виробничих систем.

Ефективне використання зазначеного устаткування неможливе без створення сучасного інструментального спорядження підвищеної надійності, яке би забезпечувало економічне використання дорогої прогресивної техніки. Ця обставина зумовлює підвищені вимоги до металорізальних інструментів, їх якості, ефективності. Тому майбутні фахівці в галузі металооброблювання повинні вміти проектувати різні види інструментів а також вдосконалювати їх для верстатів-автоматів, автоматичних ліній, верстатів з ЧПК, швидко переналагоджувальних технологічних систем з урахуванням вимог до оброблюваних деталей, особливостей устаткування.


1.

1.1 Розроблення технологічного спорядження для оброблення поверхні 3 в розмір 15h14-0,43 мм (згідно креслення деталі - “Кронштейн 6464.4700.015”)

Відправні лані для дипломного проекту:

Креслення деталі - “Кронштейн 6464.4700.015”.

Річна програма випуску виробів – N=5000 штук.

Режим роботи – двозмінний.

 

1.2 Аналіз вихідних даних для проектування верстатного пристрою

Вихідними даними для проектування пристрою є:

Креслення деталі із зазначенням усіх технічних вимог згідно ЄСКД.

Тип та організаційна форма виробництва виробів.

Технологічна операція, для якої розробляється технологічне спорядження, із схемою базування на ній заданої деталі.

Модель обладнання та його технічний стан.

Режими різання на даній технологічній операції.

аналізуємо вихідні дані для проектування пристрою.

1) Креслення деталі – кронштейна видано керівником контрольної роботи.

2) Оскільки у завданні на контрольну роботу тип виробництва та його організаційна форма не зазначені, приймаємо серійний тип виробництва та групову форму його організації.

Річну програму випуску виробів визначаємо за масою вихідної заготовки.

Масу заготовки визначаємо, припустивши, що 12 % матеріалу іде в стружку:

                                       (1.2.1)

де  ,  - відповідно маса деталі та заготовки, кг.

 кг.

Для  кг < 10 кг в умовах серійного виробництва річна програма випуску коливається в межах N=3000-35000 штук - табл. А1, стор. 37, [7]. Оскільки наше виробництво близьке до дрібносерійного приймаємо річну програму випуску виробів N=5000 штук.

Для заданого типу виробництва, окрім пристроїв механічної дії – гвинтових, ексцентрикових для значної програми випуску виробів можуть використовуватися пристрої з автоматизованим затиском – пневматичним (гідравлічним), що реалізуються за допомогою пнвмокамери чи пневмо (гідро-) циліндра.

3) Для проектування верстатного пристрою необхідно розробити технологічний маршрут механічного оброблення кронштейна.

Технологічний маршрут механічного оброблення деталі - “Кронштейн 6464.4700.015”

005 Вертикально-фрезерна

Встановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 1 однократно напрохід.

Фрезерувати поверхню 2 начорно напрохід.

Фрезерувати поверхню 2 начисто напрохід

Розкріпити заготовку у пристрої, зняти та покласти в тару.

010 Вертикально--фрезерна

Встановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 8 однократно.

Перевстановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 9 однократно напрохід

Розкріпити заготовку у пристрої, зняти та покласти в тару.

015 Вертикально--фрезерна

Встановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 10 однократно.

Розкріпити заготовку у пристрої, зняти та покласти в тару.

020 Горизонтально-розточувальна

Встановити заготовку у пристрої, вивірити та закріпити.

Розточити отвір 6 начорно.

Розточити рівець 5 однократно.

Розточити отвір 6 начисто.

Розточити отвір 6 тонко.

Розточити фаску 4.

Перевстановити заготовку у пристрої, вивірити та закріпити.

Розточити фаску 7.

Розкріпити заготовку у пристрої, зняти та покласти в тару.

025 Вертикально--фрезерна

Встановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 3 начорно напрохід.

Фрезерувати поверхню 3 начисто напрохід, витримуючи розмір 15h14-0,43 мм.

Розкріпити заготовку у пристрої, зняти та покласти в тару.

030 Радіально-свердлильна

Встановити заготовку у пристрої, вивірити та закріпити.

Свердлити два отвори 11 однократно напрохід почергово, два отвори 12 напрохід почергово.

Розсвердлити два отвори 12 напрохід почергово.

Розсвердлити два отвори 13 однократно почергово.

Розкріпити заготовку у пристрої, зняти та покласти в тару.

035 Контрольна

Верстатний пристрій проектуємо на технологічну операцію 025 Вертикально-фрезерна.

025 Вертикально-фрезерна

Встановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 3 начорно напрохід.

Фрезерувати поверхню 3 начисто напрохід, витримуючи розмір 15h14-0,43 мм.

Розкріпити заготовку у пристрої, зняти та покласти в тару.

Необхідну точність оброблення деталі на верстаті забезпечують наданням заготовці цілком визначеного положення відносно металорізального інструменту, тобто за рахунок забезпечення правильного її базування в пристрої.

Необхідна орієнтація та нерухомість заготовки у вибраній системі координат забезпечується накладанням на неї шести двосторонніх геометричних зв’язків, які позбавляють заготовку шести ступенів вільності. Як відомо з курсу теоретичної механіки, кожне вільне тіло у просторі має шість ступеней вільності, тобто три можливі переміщення у напрямку трьох координатних осей ОХ, ОY та OZ та трьох можливих поворотів навколо вказаних осей. Підпираючи тіло опорою в якійсь одній точці, позбавляємо його однієї ступені вільності. Для повного визначення положення тіла, тобто позбавлення всіх шести ступеней вільності, його необхідно і достатньо підперти в шести незалежних точках, розміщених у загальному випадку на трьох різних поверхнях. Це є так зване правило шести точок, що широко застосовується при базуванні деталей. Поверхню, на якій розміщені три опорні точки, називають установною, другу поверхню з двома опорними точками – напрямною і третю з одною опорною точкою – опорною поверхнями. Можливі і інші варіанти базування деталей, зокрема використанням подвійної напрямної бази тощо.

Опорна точка символізує один із зв’язків заготовки з вибраною системою координат. Опорні точки матеріалізуються у пристрої різними за конструкцією установними елементами.

Переважно, у процесі базування деталі у пристрої вона контактує з опорами, а наявність реальних зв’язків символізується опорними точками, що мають теоретичний зміст.

Положення заготовки у пристрої забезпечується відповідними розміщенням точок, яке залежить від конфігурації деталі та необхідним її положенням стосовно металорізального інструменту.

Схема базування представляє собою схему розташування опорних точок на базових поверхнях заготовки чи виробу.

Одночасно із розробленням схеми базування вибирають конструкції опор, які повинні забезпечити необхідне базування заготовки, стійкість і жорсткість її закріплення. Конструкції опор вибирають залежно від схеми базування, форми, розмірів і шорсткості базових поверхонь.

Під час оброблення деталь повинна бути нерухомою відносно пристрою, тобто позбавлена всіх шести ступенів волі (повне базування).

В залежності від технічних вимог на деталь і умов оброблення здійснюють повну чи неповну орієнтацію заготовки в пристрої.

Повна орієнтація забезпечується установленням заготовки на шістьох опорних точках (правило шести точок). У цьому випадку для базування в загальному випадку необхідний комплект із трьох технологічних баз. Більше шести опорних точок використовувати неприпустимо, оскільки в противному випадку при закріпленні порушується положення деталі.

Якщо за умовами оброблення не потрібно точного встановлення заготовки у визначених напрямках чи допускається її поворот щодо якої-небудь осі, то немає необхідності в повному орієнтуванні заготовки в пристрої з використанням усього комплекту з трьох баз, що несуть шість опорних точок. При цьому використовують п’ять, чотири і навіть три опорні точки. Кількість опорних точок визначається числом установних баз і їхньою формою, а також умовами виконання операції.

Тому що під час оброблення деталь повинна бути нерухомою в пристрої, тобто позбавлена всіх ступенів волі, то при її неповній орієнтації ступені вільності, що залишилися, ліквідуються закріпленням (повне базування при неповній орієнтації).

Схему базування розробляють з урахуванням технічних вимог на оброблення деталі, а також можливості її реалізації в пристрої.

Правильно обрана схема базування забезпечує необхідну стійкість деталі при обробленні та найменшій похибці базування, тобто найменшому відхиленні фактично досягнутому положенні заготовки чи виробу під час базування від необхідного.

Розроблення схеми базування деталі в пристрої виконуємо згідно методики, запропонованої д.т.н., професора Кукляком М.Л. [8].

Виходячи з операційного креслення деталі й умов виконання операції, необхідно вибрати технологічні бази деталі. Вибір технологічних баз необхідно робити таким чином, щоб забезпечити необхідну орієнтацію та достатню стійкість деталі в пристрої. При цьому необхідно намагатися, щоб технологічні бази збігалися з вимірними, а вимірні з конструкторськими. Кількість баз визначається вимогами креслення й умовами виконання операцій.

З усіх баз виділити головну та вибрати спосіб її встановлення в пристрої. За головну базу приймається база, що забезпечує найбільш стійке положення деталі у пристрої та від якої задані найбільш точні розміри. Деталь, розміщена головною базою у пристрої, одержує майже повну орієнтацію, позбавляючись трьох чи чотирьох ступенів волі.

Визначивши, яких ступенів волі буде позбавлена заготовка за допомогою елемента, що встановлює головну базу, і які ступені вільності в неї залишаться, вибрати метод установлення інших баз. При цьому необхідно користатися таким правилом: жоден установний елемент не повинен позбавляти деталь трьох ступенів вільності, яких вона вже позбавлена за допомогою інших елементів.

Використовуючи операційне креслення чи ескіз, на базах заготовки умовними позначками проставити опорні точки і пронумерувати їх, починаючи з головної бази.

Виходячи зі схеми базування, а також форми, розмірів і шорсткості базових поверхонь, вибрати конструкції установних елементів і затискних деталей пристрою і зобразити можливу реалізацію даної схеми в пристрої.

Схема базування деталі на даній технологічній операції подана на рис. 1.

За технологічні бази на цій операції прийнята площини 1, 7 (установна база), отвір 6 в розмір Æ32js7 мм (напрямна база ) та площина 9 (опорна база) (рис. 2.1).

За головну базу прийняті площини 1, 2 , оскільки при встановленні цими поверхнями заготовка набуде стійкого положення. Цією базою позбавляється трьох ступенів вільності (3 точки - 1, 2, 3: установна база).

Інші опорні точки розміщуються в отворі 6 (оскільки задається допуск перпендикулярності поверхні 3 відносно отвору 6 в межах 0,04 мм) - база Б - (Æ32js7 мм) –(2 точки – 4, 5: напрямна база) та на необроблюваній площині 14 - (1 точка – 6: опорна база).

Практична реалізація теоретичної схеми базування може бути здійснена наступним чином: установча база – за рахунок використання опорних пластин або опор, напрямна база – повнопрофільного пальця, опорна база – пластини або опори.

Оскільки ми маємо серійне виробництво (N=5000 штук), тому необхідно передбачити в конструкції пристрою автоматизований затиск – пневматичний (гідравлічний).

5) Конструкція пристрою повинна бути узгоджена із установчими елементами столів верстатів.

6) При можливості необхідно спроектувати конструкцію пристрою таким чином, щоб сила різання була силою закріплення заготовки у пристрої.


Рис. 1.2.1. Схема базування кронштейна при обробленні поверхні 3 в розмір 15h14-0,43 мм

1.3 Службове призначення верстатного пристрою

Верстатний пристрій розробляється для технологічної операції:

Вертикально-фрезерна

Встановити заготовку у пристрої, вивірити та закріпити.

Фрезерувати поверхню 3 начорно напрохід.

Фрезерувати поверхню 3 начисто напрохід, витримуючи розмір 15h14-0,43 мм.

Розкріпити заготовку у пристрої, зняти та покласти в тару.

Верстатний пристрій призначений для двократного фрезерування площини на вертикально-фрезерному верстаті в розмір 15h14-0,43 мм за допомогою торцевої фрези Æ 100 мм. Заготовка базується на опорних пластинах або опорах (установча база) та повнопрофільному пальці. Затиск здійснюється по поверхнях бобишки Æ 44 мм.

1.4 Розрахунок сумарної похибки, вибір раціональної схеми встановлення і установних елементів пристрою

На точність оброблення впливає цілий ряд технологічних факторів, які спричиняють сумарну похибку, що для плоских поверхонь визначається згідно формули :

де  – похибка встановлення заготовки у пристрій;

 - похибка оброблення, яка виникає внаслідок зміщення елементів технологічної системи під дією сил різання та інерційних сил;

 - похибка налагодження технологічної системи;

 - похибка зношування різального інструменту;

 - похибка верстата внаслідок зношування за період експлуатації;

 - температурна похибка оброблення;

k – коефіцієнт ризику; приймаємо k=1;

kI – коефіцієнти, що враховують відповідні закони розподілу похибок.

Похибка встановлення:  визначається за формулою:

,                                     (1.4.1)

де  – похибка базування;

 - похибка закріплення;

 - похибка розташування заготовки у пристрої.

Похибка базування при даній схемі базування дорівнює нулю, оскільки конструкторська, технологічна та вимірні бази співпадають.

Отже, .

Похибку закріплення визначають із залежності:

,                                    (1.4.2)

де ymax, ymin– відповідно максимальне та мінімальне зміщення заготовки при її закріпленні;

a- кут, під яким знаходиться оброблювана площина.

З огляду на досвід виконання фрезерних робіт приймаємо  мкм.

Похибка положення заготовки є наслідком неточності виготовлення верстатного спорядження, зношування його установчих елементів, а також похибки встановлення спорядження на верстаті:

                    (1.4.3)

Похибка виготовлення пристрою  залежить в основному від точності виготовлення деталей верстатного пристрою. Технологічні можливості виготовлення верстатного спорядження забезпечують  в межах 3¸100 мкм.

Вважаючи, що використовуване обладнання – нове, приймаємо =20 мкм.

Складова характеризує зношування установчих елементів:

,                                     (1.4.4)

де N– число контактів заготовки з опорою (приймаємо рівним програмі випуску виробів: N=5000 штук);

b - поправочний коефіцієнт; для циліндричних пальців і опор b=0,01.

 мкм.

Складова  виражає похибку встановлення пристрою на верстаті. Величина  складає 10¸20 мкм.

Приймаємо =20 мкм.

Визначаємо сумарну похибку положення заготовки:

                               (1.4.5)

 мкм.

Отже, похибка встановлення буде становити:

 мкм.

Похибка оброблення  виникає внаслідок зміщення елементів технологічної системи під дією сил різання. Вважаємо, що сила різання та крутний момент у нашому випадку буде повністю компенсований силою затиску та грамотним розміщенням опор при великій жорсткості системи; у цьому разі похибкою оброблення можна знехтувати: =0.

Похибку налагодження технологічної системи  за рахунок використання установів приймаємо рівною 0.

Отже, =0 мкм.

Похибка зношування металорізального інструменту =80 мкм згідно табл. 29, стор. 74, [3].

Похибка верстата внаслідок зношування за період експлуатації  =50 мкм згідно табл. 23, стор.55, [3].

Температурну похибку  приймають рівною 0,1 від сумарної похибки;

                                  (1.4.6)

Без врахування температурної похибки:

 мкм.

 мкм.

 мкм.

Перевіряємо виконання умови:

  (0,85…0,9)×Th,

де Th – допуск на витримуваний розмір під час фрезерування 15h14 мм, тобто Th=430 мкм.

 мкм  365,5…387 мкм - умова виконується.

Оскільки дана технологічна операція виконується при базуванні на оброблені поверхні, використовуємо в якості опор плоскі пластини або опори.

1.5 Структурний аналіз і синтез компоновок пристрою, вибір оптимальної компоновки пристрою та принципу дії

Аналіз компоновки конструктивних схем виконуємо на основі сумарних коефіцієнтів ваг.

,           (1.5.1)

де  – сумарний коефіцієнт ваг;

 - оптимальний коефіцієнт підсилення;

 - коефіцієнт, що характеризує володіння властивістю самогальмування;

 - коефіцієнт, що визначає кількість передавальних механізмів;

 - коефіцієнт, що визначає наявність проміжних ланок;

 - коефіцієнт, що характеризує компактність пристрою.

Схеми конкуруючих компоновок пристрою зображено на рис. 1.5.1.

Заготовку на рис. 1.5.2 покажемо умовно.

На основі аналізу рис. 1.1 формуємо табл. 1.5.1


Таблиця 12.4

Визначення сумарних коефіцієнтів ваг для конкуруючих компоновок пристрою

№ схеми Критерій оцінки Критерій оцінки компоновочних схем за коефіцієнтом ваги
Оптимальний коефіцієнт підсилення Володіння властивістю самогальму-вання Кількість передавальних механізмів Наявність проміжної ланки Компактність

1 1 0 1 0 3 1,9
2 2 1 3 2 2 1,85
3 1 0 0 1 1 0,9
Вага критерію +0,5 +0,35 -0,1 -0,1 +0,5

Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.