рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Реферат: Соединения деталей и узлов машин

9,26

Рисунок 13 – Расчётная схема зуба шлицевого соединения

Условие прочности по допускаемым на­пряжениям смятия имеет вид

где dm - средний диаметр соединения; z - ­число зубьев; h и l - соответственно высо­та и длина поверхности контакта зубьев; ψ - коэффициент, учитывающий нерав­номерное распределение нагрузки между зубьями и вдоль зубьев (ψ=0,5?0,7); [σсм] - допускаемое напряжение смятия на боковых поверхностях.

Для соединения с эвольвентными зубья­ми принимают: [σсм] =0,2σв ­для неподвижных соединений с химико­-термической обработкой зубьев;

[σсм] =0,lσв - то же для подвижных сое­динений. Для соединений с зубьями без химико-термической обработки зна­чения [σсм] снижают вдвое. Высота и длина поверхности контакта: для прямобочных зубьев

;    ;

для эвольвентных зубьев h=m; dm=mz, где m – модуль зубьев.

Шлицевым соединениям присуща высо­кая концентрация нагрузки, обусловленная погрешностями изготовле­ния, смещениями осей деталей под нагруз­кой, закручиванием деталей. Лишь в идеально точном соединении при дейст­вии вращающего момента Т нагрузка между зубьями распределена равномерно

; где I – номер зуба.

При совместном действии момента и радиальной силы F, нагрузка между зубьями будет распределяться неравно­мерно

   и  

В реальных соединениях имеются погрешности в угловом шаге зубьев вала и втулки, а также радиальные зазоры, ко­торые приводят к существенно неравно­мерному распределению нагрузки в ок­ружном направлении и циклическому взаимному смещению деталей в осевом направлении, изнашиванию зубьев и раз­витию контактной коррозии.

В приближенном расчете концентрацию нагрузки учитывают общим коэффициен­том ψ. Для улучшения распределения нагрузки и повышения долговечности соединений повышают точность изготовления, совершенствуют формы деталей и выполняют ряд других мероприя­тий.  

         11 Штифтовые соединения

                   Штифтовые соединения применяют при небольших нагрузках преимущественно в приборостроении. Соединяемые детали сопрягаются при этом по переходным посадкам.

Рисунок 14 – Штифтовые соединения

Для исключения выпадения в процессе работы используют штифты: с насеченными канавками, вальцованные, резьбовые. Часто для этих же целей произ­водят разведение концов штифтов.

9,31

Рисунок 15 – Штифты (а – гладкие, б – с канавками, в – с резьбовым концом, г – разводной конический)

Основные типы штифтов стандартизо­ваны. Их изготовляют из углеродистых сталей 30, 45, 50 и др.

По характеру работы штифтовое соеди­нение подобно заклепочному (работает на срез и смятие). Для расчета соединения используют те же зависимости. Условие прочности при срезе радиального штифта,

а условие прочности по смятию

где Ft - срезающая сила (осевая или окружная); i - число поверхностей среза; Ас=πd2/ 4 - площадь штифта при срезе; Асм=d(D-d1) - площадь поверхности смятия (сжатия); [τc]=70?80 МПа­ - допускаемое напряжение при срезе; [σсм] =200?300 МПа - допускаемое напряжение при смятии.

Срезающая сила при передаче вра­щающего момента Ft=2T/d1.

Штифты диаметром d=(0,1?0,15)dв и длиной l=(3?4)dв (dв - диаметр вала) устанавливают по посадке с натягом Н7/r6 в отверстия, совместно просверленные и развернутые при сборке в валу и ступице по стыку посадочных поверхностей.

9,32

Рисунок 16 – Схемы к расчёту соединений радиальным (а) и осевым (б) штифтами

Многоштифтовые соединения этого типа по прочности близки к шлицевым.


12. Шпоночные соединения

Соединения двух со­осных цилиндрических деталей для передачи вращения между ними осуществляется с помощью шпонки 1 (в соответстивии с  рисунком 17, а), специальной детали, за­кладываемой в пазы соединяемых вала 2 и ступицы 3.

9,20

Рисунок 17 – Шпоночные соединения

В машиностроении применяют не­напряженные (без нагрузки) соеди­нения (с помощью призматических и сег­ментных шпонок (в соответстивии с  рисунком 17, б и в), и напряженные соединения (с помощью клиновых шпонок (в соответстивии с  рисунком 17, г)). Шпонки этих типов стандартизованы, их размеры выбирают по ГОСТ 23360-78, ГОСТ 24071-80 и ГОСТ 24068-80.

Основные достоинства соединений со­стоят в простоте конструкции и возмож­ности жесткой фиксации насаживаемой детали в окружном направлении.

Однако соединения трудоемки в изго­товлении, требуют ручной пригонки или подбора. Это ограничивает использование соединений в машинах крупносерийного и массового производства. Не рекомендуется применение соединений для быстровра­щающихся валов ответственного назначе­ния из-за сложности обеспечения концент­ричной посадки сопрягаемых деталей.

Шпоночные соединения применяют преимущественно в тех случаях, когда посадку с натягом не удается реализовать по условиям прочности или технологическим возможностям.

Соединения призматическими шпонка­ми. Применяются в конструкциях наиболее широко, так как просты в изготовлении и имеют сравнительно небольшую глубину врезания в вал.

Шпонки имеют прямоугольное сечение с отношением высоты к ширине от 1 (для валов диаметром до 22 мм) до 0,5 (для валов больших диа­метров). Их устанавливают с натягом в пазы валов. Рабочими у шпонок являют­ся боковые узкие грани. В радиальном направлении предусмотрен зазор, В ответ­ственных соединениях сопряжение дна па­за с боковыми сторонами выполняют по радиусу для снижения концентрации напряжений. Материал шпонок - чистотянутая сталь 45 или сталь Ст6 с пределом прочности σв =590?750 МПа.

Если принять для упрощения, что напря­жения в зоне контакта распределены рав­номерно, и плечо рав­нодействующей этих напряжений равно 0,5d (где d - диаметр вала), то средние контактные напряжения (напряжения смя­тия, вызывающие смятие рабочих граней)

 

где Т - вращающий момент; lр - рабочая длина шпонки; t2=0,4h - ­глубина врезания шпонки в ступицу;  - допускаемое напряжение на смя­тие.

На практике сечение шпонки подбирают по ГОСТ 23360-78 в зависимости от диа­метра вала, а длину l шпонки назначают на 5-10 мм меньше длины ступицы. Затем по формуле (1) оценивают прочность соединения на смятие или вычисляют пре­дельный момент, соответствующий напря­жению .

Рабочая длина шпонки lp=l-b может быть определена из очевидного соотношения.

.

Проверку прочности шпонок на срез обычно не производят, так как это условие удовлетворяется при использовании стан­дартных сечений шпонок и рекомендуемых значений .

Если условие прочности не выпол­няется, то соединение образуют с помощью двух шпонок, установленных под углом 120 или 180°.

Соединения характеризуются сущест­венно неравномерным распределением нагрузки и напряжений как по высоте сечения, так и по длине шпонки. Это вызывает упругопласти­ческое смятие рабочих граней пазов и шпонки, закручивание ее, особенно при на­личии зазора между валом и ступицей. Поэтому длину шпоночных соединений ог­раничивают (l≤1,5d), а посадку зубча­тых колес, шкивов, полумуфт и других деталей на валы осуществляют с натягом (посадки Н7/р6; Н7/r6; H7/s7; H7/k6 и т. п.).

В этом случае шпоночные соединения по существу выключаются из работы и оказы­ваются резервными, а шпонки обеспечи­вают лишь жесткую фиксацию в окружном направлении насаживаемых деталей.

Соединения сегментными шпонками. Сегментные шпонки имеют более глубокую посадку и не пере­кашиваются под нагрузкой, они не требуют ручной пригонки. Однако глубокий паз су­щественно ослабляет вал, поэтому сег­ментные шпонки используют преимущест­венно для закрепления деталей на мало­нагруженных участках вала (например, на входных или выходных хвостовиках валов).

Расчет соединений с сегментными шпон­ками также производят по формуле, принимая t2=h-t1. До­пускаемые напряжения смятия  при постоянной нагрузке в соединении сталь­ного вала и шпонки из чистотянутой стали (σв=500?600 МПа) в зависимости от материала ступицы можно выбирать следующими: 150-180 МПа - для ступиц из стали; 80-100 МПа - из чугуна и алю­миния; 15-25 МПа - из текстолита и древопластика.

Большие значения принимают при лег­ком режиме работы (переменная нагрузка не больше 5% от постоянной), а мень­шие - при тяжелых условиях эксплуатации (нагрузка знакопеременная с ударами).


13. Резьба

 

Резьба - выступы, образованные на основной поверхности винтов или гаек и расположенные по винтовой линии. Резьбовое соединение образуется двумя (реже тремя) деталями. У одной из них на наружной, а у другой на внутренней поверхности имеются расположенные по винтовой поверхности выступы – соответственно наружная и внутренняя резьба (в соответстивии с  рисунком 18).

По форме основной поверхности различают цилиндрические и конические резьбы. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений труб, масленок, пробок и т. п.

Профиль резьбы — контур сечения резьбы в плоскости, проходящей через ось основной поверхности. По форме профиля различают треугольные, прямоугольные, тра­пецеидальные, круглые и другие резьбы.

По направлению винтовой линии различают правую и левую резьбы. У правой резьбы винтовая линия идет слева направо и вверх, у левой — справа налево и вверх. Наиболее рас­пространена правая резьба. Левую резьбу применяют только в специальных случаях.

Если витки резьбы расположены по двум или нескольким параллельным вин­товым линиям, то они образуют многозаходную резьбу. По числу захода раз­личают однозаходную, двухзаходную и т. д. резьбы. Наиболее распространена однозаходная резьба. Все крепежные ре­зьбы однозаходные. Многозаходные резь­бы применяются преимущественно в винтовых механизмах. Число заходов больше трех применяют редко.

8,1

Рисунок 18 – Резьбовое соединение с метрической резьбой

Методы изготовления резьбы

 1. Нарезкой вручную мет­чиками или плашками. Способ малопроизводительный. Его применяют в индивидуальном производстве и при ремонтных работах.

 2.   Нарезкой на токарно-винторезных или специальных станках.

 3.   Фрезерованием на специальных резьбофрезерных станках. Применяют для нарезки винтов больших диаметров с повышенными требованиями к точности резьбы (ходовые и грузовые винты, резьбы на валах и т.д.).

  4.   Накаткой на специальных резьбонакатных станках-автоматах. Этим высокопроизводительным и дешёвым способом изготовляют большинство резьб стандартных  крепёжных деталей (болты, винты и т.д.). Накатка существенно упрочняет резьбовые детали.

  5.   Литьём на деталях из стекла, пластмассы, металлокерамики и др.

  6. Выдавливанием на тонкостенных давленных и штампованных изделиях из жести, пластмассы и т.д.

Наибольшее распространение в машино­- и приборостроении имеет метрическая резьба по ГОСТ 8724-81 с крупными мелким шагами. Она обозна­чается буквой М и цифрами, показывающими наружный диаметр резь­бы (например, резьба, имеющая d=24 мм, обозначается М24), в обозначении резьбы с мелким шагом, кроме диаметра, в форме сомножителя указывается ее шаг (например, М24?1,5 для резьбы, имеющей d=24 мм и Р=1,5 мм). Области примене­ния других типов резьб ограничены спе­циальными конструкциями.

Крепежные детали и типы соединений. Наибольшее распространение среди резь­бовых деталей получили крепежные болты, винты, шпильки, гайки и вставки. С помощью этих деталей образуют большинство разъемных соединении в конструкциях.

8,3

Рисунок 19 – Основные типы резьбовых соединений

Болт (в соответстивии с  рисунком 19, а) и винт (в соответстивии с  рисунком 19, б) – стержень с головкой и одним резьбовым концом. Шпилька (рисунок 19, в) имеет два резьбовых конца. Вставка (в соответстивии с  рисунком 19, г). Винт с резьбовой втулкой (в соответстивии с  рисунком 19, д).

Выбор типа соединения определяется проч­ностью материала соединяемых деталей, частотой сборки и разборки соединения в эксплуатации, а также особенностями конструкции и технологии изготовления соединяемых деталей.

Соединения болтом применяют только при наличии доступа к гайке и головке болта для скрепления деталей сравнитель­но небольшой толщины (например, при наличии специальных поясков или флан­цев), а также при многократной раз­борке и сборке соединений. В последнем случае (особенно при большой толщине соединяемых деталей) предпочтение отда­ется также соединениям винтом или шпилькой.

Соединения винтом и шпилькой при­меняют для скрепления деталей при нали­чии доступа монтажного инструмента лишь с одной стороны (к гайке). Область применения соединений винтом в силовых конструкциях ограничена, пред­почтение отдается соединениям шпилькой. Шпильки фиксируют (стопорят) в корпусной детали (посадкой на резьбе с натя­гом, завинчиванием на сбег резьбы, с помощью клея и т. д.) для предотвра­щения вывинчивания их при отвинчивании гаек.

Вставки применяют в основном для по­вышения износостойкости резьбы в корпу­сах из материалов с невысокой проч­ностью, а также для повышения прочности соединений.

Резьбовые втулки используют преиму­щественно в корпусах из композиционных материалов.

Для предотвращения повреждения по­верхностей соединяемых деталей при за­винчивании гаек под них подкладывают шайбы.

 Конструктивным разнообразием отли­чаются стержни болтов (винтов). Наряду с обычной (в соответстивии с  рисунком 20), наиболее распростра­ненной формой болта (а) приме­няют другие конструкции. Болт (б) в отличие от предыдущего имеет диаметр стержня несколько больше наруж­ного диаметра резьбы. Такие болты уста­навливают в отверстия корпусов без за­зора. В ряде ответственных соединений для увеличения податливости при меняют полые болты (в). Болты на (г и д) имеют центрирующие пояски под головками, а поясок посередине (д) предназначен для гашения виб­раций стержня.

8,4

Рисунок 20 – Конструктивные формы стержней болтов

Формы головок болтов (в соответстивии с  рисунком 21)  и гаек также разнообразны, выбор их для практического использования опре­деляется преимущественно условиями ра­боты соединений, технологией изготовле­ния крепежных деталей и их сборкой.

8,5

Рисунок 21 – Конструктивные формы головок болтов (винтов)

Для фиксирования деталей на валах, осях и др. применяют установочные винты с резьбой по всей длине стержня и упорным наконечником.

Основ­ные материалы болтов (винтов), шпилек и гаек и их механические характеристики нормированы ГОСТ 1759-82.

Для болтов, винтов и шпилек из угле­родистых и легированных сталей установ­лены 12 классов прочности, а для гаек - семь и соответствующие им рекоменду­емые марки сталей.

Выбор материала определяется условия­ми работы. И технологией изготовления. Стержни болтов в массовом производстве изготовляют из пластичных сталей 10, 15, 15Х, 16ХСН и др. на авто­матах методом холодной высадки, резьбу на болтах накатывают.

Для защиты крепежных деталей из угле­родистых сталей от коррозии на них нано­сят окисные пленки или гальванические покрытия (цинковое, кадмиевое, фосфат­ное, медное и др.). Толщина покрытий выбирается в зависимости от шага резьбы и имеет следующие значения: 3-6 мкм для шага до 0,4 мм, 6-9 мкм – для шага 0,4-0,8 мм и 9-12 мкм для шага свыше 0,8 мм.

Расчет резьбовых соединений. Расчет резьбового соединения включает в себя обычно две связанные между со­бой задачи: оценку прочности соединения и оценку плотности сты­ка.

Прочность соединения определяется, как правило, прочностью болта (шпильки), и для ее оценки необходимо знать напряжения в сечении с наименьшей площадью.

В случае, когда внешняя нагрузка на болт изменяется циклически от 0 до F , амплитуда переменных напряжений в сечении по внутреннему диаметру резьбы

     

и среднее напряжение

   

Практика и экспериментальные исследо­вания показали, что прочность затянутых резьбовых соединений при переменной на­грузке определяется ее амплитудой ; чем меньше , тем больше долговечность и ресурс работы соединений. Поэтому одна из важнейших задач конструктора резьбо­вого соединения - добиться снижения внешней нагрузки на болт (шпильку).

Правило конструирования резьбового соединения: жесткие фланцы ­податливые болты.

Плотность стыка определяется остаточной силой в стыке. Внешняя на­грузка F уменьшает силу на стыке деталей до значения

Если сила на стыке станет равной нулю, то стык раскроется и вся внешняя нагрузка будет восприниматься болтом, что опасно для его прочности.

Для предотвращения раскрытия стыка должно соблюдаться условие Fс>0; тогда минимальная сила затяжки

Обычно назначают

где ν - запас по плотности стыка равен 1,25-2 для постоянных нагрузок; 2,5-4 для переменных нагрузок.

Для герметизации стыков применяют плоские прокладки из резины, картона, алюминия, меди и других мягких мате­риалов, упругие кольца, герметики и т. д. Герметичность стыков и соединений про­веряют течеискателями и другими спосо­бами.

Таким образом, сила предварительной затяжки определяется внешней нагрузкой.

Допустимое напряжение затяжки σ0=F0/A1≤0,8σT где σT - предел текучести материала болта. Обычно назначают σ0 = (0,4?0,7) σT.

Для того чтобы соединения работали в расчетных силовых условиях, необходи­мо контролировать затяжку соединений.


14. Соединения с натягом

Соединение деталей машин с натягом - разностью посадочных размеров - осуществляют за счет их пред­варительной деформации. С помощью натяга соединяют обычно детали с цилиндри­ческими и реже коническими поверхностями контакта.

Соединение деталей с натягом представляет собой сопря­жение, в котором передача нагрузки от одной детали к другой осуществляется за счет сил трения на поверх­ностях контакта, образующихся благодаря силам упругости. Вследствие этого соеди­нение имеет нежесткую фиксацию деталей в осевом и окружном направлениях.

9,1

Рисунок 22 – Соединения с натягом венца червячного колеса с центром (а) и шарикоподшипника с валом (б)

Соединения используют сравнительно часто для посадки на валы и оси зуб­чатых колес, шкивов, звездочек и др.

Два способа соединения:

1) При сборке механическим способом охватывае­мую деталь с помощью пресса устанавливают в охватывающую деталь или наоборот. Этот способ ис­пользуется при сравнительно небольших натягах.

2) Тепловой способ соединения применяет­ся при больших натягах и производится путем нагрева охватывающей детали до температуры 300 °С в масляной ванне или охлаждения в жидком азоте охватываемой детали. Вы­бор способа зависит от соотношения масс и конфигурации деталей.

В настоящее время получают распрост­ранение так называемые термомеханичес­кие соединения элементами с памятью формы. Это свойство присуще сплавам, испытывающим обратимое мартенситное превращение, и характеризуется как спо­собность материала, деформированного в мартенситном состоянии, полностью или частично восстанавливать свою форму в процессе последующего нагрева.

Для конструкционных элементов с па­мятью формы используют никель титановый сплав с температурами мартенсит­ного превращения -80?-150 °С и вос­становления формы -140?-60 °С. Сплав практически полностью восстанавливает заданную деформацию и развивает на­пряжение в условиях противодействия процессу формовосстановления до 200­-400 МПа.

Для предупреждения быстрого нагрева деталь устанавливают монтажными кле­щами, губки которых либо изготовляют из материала с большей теплоемкостью, на­пример, меди, либо имеют хлопчатобумаж­ный вкладыш, впитывающий жидкий азот. Допускается сборка такими клещами в течение 2-3 мин.

Нагрев детали теплотой окружающей среды приводит к восстановлению ее прежних размеров и образованию натяга.

Достоинства соединений с натягом оче­видны: они сравнительно дешевы и просты в выполнении, обеспечивают хорошее цент­рирование сопрягаемых деталей и могут воспринимать значительные статические и динамические нагрузки. Области примене­ния таких соединений непрерывно расши­ряются.

Недостатки соединений: высокая трудо­емкость сборки при больших натягах; сложность разборки и возможность по­вреждения посадочных поверхностей при этом; высокая концентрация напряжений; склонность к контактной коррозии из-за неизбежных осевых микросмешений точек деталей вблизи краев соединения и, как следствие, пониженная прочность соедине­ний при переменных нагрузках; отсутст­вие жесткой фиксации деталей.

 Расчет соединений и подбор посадки.

Ос­новная задача расчета состоит в опреде­лении потребного натяга и соответствую­щей ему посадки по ГОСТ 25347-82 для передачи заданной сдвигающей на­грузки от вращающего момента или осе­вой силы.

Возможны случаи, когда посадка не мо­жет быть реализована в конструкции по условиям прочности (обычно охватываю­щей детали).

Поэтому при проектировании соедине­ний должны быть обеспечены как требо­вания взаимной неподвижности деталей соединения, так и усло­вия прочности деталей.

Условие неподвижности деталей соеди­нения. Выражает собой математически уравнение равновесия: при передаче внеш­ней нагрузки  соединяемые детали должны быть взаимно неподвижны.

9,2

Рисунок 23 – Расчётная схема соединения с натягом

Рассмотрим соединение с натягом дета­лей 1 (в соответствии с рисунком 23) и 2 при действии сдвигаю­щей силы, например, осевой Fа. Взаимное смещение деталей в соединении ограниче­но деформациями за счет сил сцепления, которые возникают благодаря контактным напряжениям q от натяга.

Если принять, что отнесенная к площади контакта сила трения τ пропорциональна контактному напряжению q между сопря­женными деталями, то

 

где f - коэффициент трения.

Условие взаимной неподвижности дета­лей соединения при действии сдвигаю­щей нагрузки примет вид

где d и l - диаметр и длина посадочной поверхности.

 Введем в рассмотрение номинальные контактные напряжения

 ;   тогда

Из неравенства следует, что нагрузочная способность соединения определя­ется номинальными контактными напряжениями и состоянием контактирующих поверхностей. Напряжения зависят от натяга в соединении и условий работы.

Детали соединения будут взаимно не­подвижными, если средние контактные на­пряжения

где k - коэффициент запаса сцепления, учитывающий возможное рассеяние значе­ний коэффициентов трения, погрешности в форме контактирующих поверхностей и изгиб деталей, ослаб­ляющие их сцепление.

Для соединений, подверженных изгибу, например, соединений валов и зубчатых колес редукторов, принимают значение k=3,0?4,5, понижая таким образом склонность соединений к фреттинг-корро­зии. В остальных случаях k=I,5?2,0. Значение коэффициента сцепления в формуле следует принимать минимальным из или устанавливать экспериментально.

Нагрузочная способность соединения может быть увеличена также за счет повы­шения коэффициента трения между деталями. Эффективным оказы­вается осаждение на поверхности вала тон­кого слоя из частиц карбида бора В4С или карбида кремния SiC. Такой слой повышает коэф­фициент трения в соединении с натягом до 0,7 благодаря эффекту микрозацепле­ния и, как следствие, в несколько раз увеличи­вает нагрузочную способность соединения при неизменном натяге.

9,3

Рисунок 24 – Внешние силы действующие на соединение

Сдвигающая сила может быть осевой, т. е.

или окружной (тангенциальной), т. е.

При совместном действии осевой силы и вращающего момента принимают

Уравнение выражает связь внеш­них и внутренних силовых факторов. Для решения задачи следует выразить контакт­ные напряжения через смещения точек деталей.

Условие совместности пере­мещений сопряженных деталей. Предположим, что охватывающая деталь 2 запрессована на охватываемую деталь 1. Тогда в резуль­тате деформации точки поверхностей де­талей 1 и 2 получат радиальные перемещения u1 и u2, а радиальный натяг δ будет скомпенсирован этими перемеще­ниями, т. е.

где Δ = dВ- dА - диаметральный натяг деталей.

Уравнение отражает геометричес­кую сторону задачи. Для ее решения необходимо выразить смещения в уравне­нии через контактные напряжения.

Связь смещений и контакт­ных напряжений в соединении. Контактные напряжения q в общем случае распределены по длине соединения  существенно неравномерно, так как равномерной деформации препятствуют выступающие части деталей. Связь смещений и контактных давлений имеет вид

где  - функция влияния, показы­вающая перемещение точек контакта в сечении z = с от единичной радиальной силы, приложенной в сечении z=ζ; i= 1; 2 - номер детали.

Значения функции λ можно получить расчетом.

В предварительном расчете полагают, что контактные напряжения одинаковы во всех точках поверхностей контакта. Это экви­валентно допущению о сопряжении двух цилиндров одинако­вой длины.

9,4

Рисунок 25 – Расчётная схема соединения с натягом

Задача о сопряжении с натягом двух толстостенных цилиндров бесконечной длины рассмотрена в сопротивлении ма­териалов. Установлено, что радиальные перемещения точек кон­такта

;  

где λ1 и λ2 - коэффициенты радиальной податливости деталей 1 и 2; qн - номинальное контактное напряже­ние.

Смещение u1 считают отрицательным, так как оно происходит в направлении, противоположном направлению оси r.

Соотношения отражают физичес­кую сторону задачи. Коэффициенты ра­диальной податливости зависят от ра­диальных размеров и материалов деталей:

где d - посадочный диаметр; Е1, ν1 и Е2, ν2 - модуль упругости и коэффициент Пуассона соответственно для охватывае­мой и охватывающей деталей; d1 - диа­метр отверстия в охватываемой детали; d2 - наружный диаметр охватывающей детали.

Учитывая равенство, несложно получить:

Отметим, что натяг Δ в равенстве является расчетным и соответствует разности посадочных диаметров деталей с идеально гладкими поверхностями.

Расчет требуемого натяга. Расчетное значение натяга, обеспечиваю­щее передачу соединением внешней сдви­гающей нагрузки, несложно найти, из соотношений:

Расчетный натяг Δ принимают в ка­честве минимального требуемого натяга Δ* (т. e. Δ=Δ*) при тепловом способе сборки.

Где uR – поправка на обмятие шероховатостей, мкм; uR=5,5(Ra1+Ra2)=1,2(Rz1+Rz2); Ra1 и Ra2, Rz1 и Rz2  - параметры шероховатостей деталей.

Если соединение работает при повы­шенной температуре, то ослабление натяга за счет нагрева учитывают поправкой на температурную деформа­цию:

где α1 и t1 соответственно коэффициент линейного расширения и рабочая темпера­тура охватываемой детали; α2 и t2 - то же, охватывающей детали.

В соединениях быстровращающихся де­талей также происходит «потеря» натяга

где ρ - плотность материала; ν - коэф­фициент Пуассона материала детали; ω - угловая скорость.

При угловой скорости

натяг в соединении исчезнет (qн=0).

С учетом этих замечаний минимальный требуемый натяг: при тепловом способе сборки

при механическом способе сборки

Значение минимального требуемого на­тяга, определяемого условиями нагружения и сборки, используется для подбора минимального натяга посадки (табличного натяга) Nmin:

Тип посадки по ГОСТ 25347-82 задает­ся минимальным Nmin и максимальным Nmах табличными натягами. Для его назна­чения необходимо установить также наи­большее допустимое значение натяга, определяемое условиями прочности.

9,5

Рисунок 26 – Напряжение в поперечном сечении соединения

Расчет макcимального натя­га. Натяг вызывает в соединяемых де­талях радиальные σr и окружные σθ на­пряжения (в соответствии с рисунком 26).

Напряжения в охватываемой детали (вале)

Напряжения в охватывающей детали (ступице)

где d* - диаметр сечения, в котором вы­числяют напряжения.

Распределение напряжений в попереч­ном сечении деталей соединения. Наибольшие напряжения воз­никают у внутренней поверхности охваты­вающей детали (d*=d); здесь

  ;       

Условие отсутствия пластических дефор­маций по теории максимальных касатель­ных напряжений

где  - предел текучести материала де­тали.

Практика показала, что небольшие плас­тические деформации в контакте не пони­жают работоспособности соединений, поэ­тому в расчете максимального допусти­мого контактного напряжения принимают , откуда

и соответствующий наибольший расчетный натяг

Наибольший допустимый натяг Δ*max при тепловом способе сборки равен рас­четному, т. е. Δ*max=Δmax, а при механи­ческом - Δ*max = Δmax +uR.

По условиям прочности Δ*max≥Nmax, где Nmax - максимальный табличный натяг посадки.

Уменьшение внутреннего диаметра охва­тываемой детали

и увеличение наружного диаметра охватывающей детали

Сила запрессовки

Если , то , где   - наибольшая сдвигающая нагрузка. При этом наименьшая полезная сдвигающая нагрузка

При определении  и  для соеди­нений, выполненных механическим спосо­бом, необходимо из табличных значений натяга Nmax и Nmin вычесть значение uR

Разность температур, необходимая при тепловом способе сборки (нагрев или ох­лаждение),

где  - зазор между деталями при сбор­ке, мкм.

 Табличные натяги. Каждой стан­дартной       посадке      с натягом (ГОСТ 25347- 82) соответствуют определенные значения минимального Nmin и максималь­ного Nmax натягов - табличные натяги. Для построения таблиц ис­пользуют два метода расчета натягов и в соответствии с ними натяги назы­вают предельными и вероятностными.

Предельные натяги определяются откло­нениями отверстий и валов. При посадке по системе отверстий

   

где ES и es - верхнее отклонение соот­ветственно отверстия и вала; ei – нижнее отклонение вала.

Полученные таким образом натяги назы­вают вероятностными. При нормальном законе распределения размеров

             

где Nm - средний натяг; uр - квантиль нормального распределения; SN - среднее квадратическое отклонение табличного на­тяга.

Средний натяг определяется средними значениями отклонений

где    ;      ;

Td и TD – допуски соответственно основного отверстия и вала.

Среднее квадратическое отклонение таб­личного натяга

где       

Квантиль нормального распределения uр принимает следующие значения в за­висимости от вероятности Р неразруше­ния соединения:

P       0,5   0,9     0,95   0,97    0,99    0,995    0,997    0,999

uр          12   1,28   1,64    1,88    2,33    2,58      2,75         0,1


Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.