рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Дипломная работа: Размольно-подготовительный отдел фабрики по производству бумаги

При всех видах разрушения бумаги рвутся не только связи между волокнами, но и сами волокна. Количественные соотноше­ния разрыва связей и разрыва волокон могут быть весьма различ­ными и зависят главным образом от развития сил связи: чем сла­бее силы связи, тем легче они разрушаются и меньше рвутся сами волокна и, наоборот, чем сильнее развиты межволоконные силы связи и длиннее волокна, тем больше рвутся волокна и меньше разрушаются связи между ними.

Показатели объемного веса бумаги, впитывающей способности и воздухопроницаемости зависят главным образом от сил связи между волокнами. Кривая изменения впитывающей способности бумаги в зависимости от степени помола целлюлозы является как бы обратным изображением кривой соответствующего развития межволоконных связей в бумаге. По мере того, как эти силы связи растут, волокна сближаются между собой, поры в бумаге умень­шаются, что и приводит к понижению впитывающей способности.

Зависимость деформации бумаги после увлажнения от степени помола исходной целлюлозы носит линейный характер: деформа­ция бумаги увеличивается с повышением степени помола целлю­лозы. На этот показатель, кроме сил связи, влияют и другие факторы: ориентация волокон, условия отлива и сушки бумаж­ного полотна и др.

Из приведенных данных видно, что процесс размола целлю­лозы оказывает большое влияние на все основные свойства гото­вой бумаги. Главными определяющими факторами при этом яв­ляются изменения размеров волокон и величины межволоконных связей в бумаге.

1.7. Технологические факторы, влияющие на процесс размола

К факторам, определяющим процесс размола волокнистых ма­териалов, его скорость, экономичность и направление или харак­тер размола, относятся : продолжительность размола; удельное давление при размоле; концентрация массы; вид размалывающей гарнитуры; окружная скорость размалывающих органов; кислот­ность и температура массы при размоле; свойства волокнистых материалов; влияние гидрофильных добавок.

Из этих факторов главными управляемыми факторами про­цесса являются первые два, т. е. время размола и удельное дав­ление при размоле. Концентрация массы является вспомогатель­ным управляемым фактором. Остальные факторы практически ос­таются постоянными, неуправляемыми.

1.8. Продолжительность размола

От этого фактора зависят степень помола массы, укорочение и расщепление волокон, а также развитие межволоконных сил связи. В роллах периодического действия размол массы чере­дуется с длительными перерывами, когда волокна проходят через обратный канал ванны ролла. Поэтому процесс размола растяги­вается на несколько часов, тогда как при размоле в аппаратах непрерывного действия он протекает значительно быстрее, за не­сколько секунд. Однако и при размоле массы в аппаратах непре­рывного действия время размола (или время пребывания массы непосредственно в аппарате) является не менее важным факто­ром, позволяющим регулировать процесс. Увеличение времени обработки материалов в аппаратах непрерывного действия обычно достигается путем дросселирования массы на выходе из размалы­вающего аппарата при помощи задвижки, увеличения коэффици­ента рециркуляции массы или путем установки нескольких аппа­ратов последовательно в одном потоке. Это будет изложено под­робнее в разделе о непрерывном размоле массы.

Продолжительность размола массы в роллах периодического действия зависит от требуемых параметров массы, от конструкции ролла и типа применяемой гарнитуры, от удельного давления при размоле, свойств самого волокнистого материала и некоторых Других технологических факторов. Она может колебаться в преде­лах от 0,5—1 ч при размоле целлюлозы для бумаги с садким по­молом до 18—24 ч при производстве тончайшей конденсаторной бумаги.

При увеличении продолжительности размола пропускная спо­собность любого размалывающего аппарата понижается, при этом между пропускной способностью и временем обработки наблю­дается обратно пропорциональная зависимость. Соответственно повышается эффект обработки: увеличивается степень помола массы, изменяется средняя длина волокна и повышается проч­ность бумаги.

1.9. Удельное давление при размоле

Удельное давление при размоле влияет на характер размола (направление процесса), его скорость и эффективность. Так, если при размоле какого-либо волокнистого материала постепенно по­вышать удельное давление от нуля до высокого значения, то вна­чале волокна будут только расчесываться, затем начнут расщеп­ляться, раздавливаться и, наконец, укорачиваться. При этом ре­жущее действие размалывающей гарнитуры будет возрастать, а гидратирующее и фибриллирующее—снижаться, в результате чего прочность бумаги на разрыв, раздирание и излом будет сни­жаться, а пухлость и пористость бумаги при одинаковой степени помола массы будут повышаться.

Удельное давление при размоле связано с величиной зазора между размалывающими поверхностями рабочей части аппарата. В роллах, имеющих весовое или поршневое присадочное устройство ролльного барабана, величина зазора является функцией удель­ного давления, концентрации массы и свойств волокна. Между ножами размалывающих органов образуется волокнистая про­слойка, толщина которой тем меньше, чем выше удельное давле­ние, ниже концентрация, выше степень помола массы.

При работе с постоянным давлением зазор между ножами ус­танавливается автоматически и определяется степенью сжатия волокнистой прослойки. При размоле, по мере того как волокна измельчаются, гидратируются и становятся более пластичными, величина зазора между размалывающими поверхностями аппа­рата постепенно уменьшается. При размоле в роллах старой кон­струкции, не имеющих весового устройства, когда ролльный ба­рабан жестко закреплен в определенном положении с помощью винтового присадочного устройства и сохраняет постоянный зазор между ножами, по мере измельчения волокна и изменения свойств волокнистой прослойки размалывающий эффект постепенно ос­лабевает. Поэтому в процессе размола массы применяют ступен­чатую присадку ролльного барабана.

Расстояние между ножами ролльного барабана при работе ролла обычно находится в пределах от 0 до 1 мм. Величина зазора при расчесе волокна составляет обычно 0,5—0,8 мм, при легком размоле, при котором волокна будут не только расчесываться, но и расщепляться по длине волокна,— в пределах   0,2—0,4 мм, при средней интенсивности процесса размола — 0,1—0,2 мм и при сильном размоле с высоким удельным давлением — меньше 0,1 мм. Иногда роллы снабжаются указателями величины зазора между ножами, однако, как показала практика, подобные уст­ройства обычно плохо работают, так как величина зазора очень мала и на показания прибора влияют: степень износа ножей, ве­личина люфта в подшипниках ролльного барабана и др.

Удельное давление при размоле в аппаратах, имеющих весо­вое или поршневое присадочное устройство, является более на­дежным показателем этого процесса.

Аппараты непрерывного действия обычно работают с постоян­ным зазором между размалывающими органами, поскольку ха­рактер волокнистой массы при размоле остается неизменным. Ко­нические мельницы Жордана работают с меньшей, а гидрофайнеры и дисковые рафинеры с большей величиной зазора (около 0,2—0,3 мм) между ножами.

Величину удельного давления при размоле массы выбирают с учетом требуемых параметров массы и свойств вырабатываемой бумаги, типа размалывающего аппарата и гарнитуры, а также прочности исходного волокна. Для интенсивного укорочения воло­кон при минимальной их гидратации применяют высокое удель­ное давление, для интенсивной фибрилляции и продольного рас­щепления волокон при высокой гидратации — относительно низкое удельное давление. Прочные волокнистые материалы (сульфатную небеленую целлюлозу и тряпичную полумассу) размалывают при более высоком давлении, чем менее прочные материалы (сульфитную целлюлозу). Коротковолокнистую целлюлозу из лиственной древесины и однолетних растений (соломы, тростника и др.), а также макулатуру размалывают при низком удельном давле­нии, чтобы не укорачивать волокон, а подвергать лишь легкому рафинирующему воздействию.


1.10.Размалывающая гарнитура

Размалывающая гарнитура аппаратов может быть металличе­ская, базальтовая и комбинированная (из первых двух).

Металлическая гарнитура может быть литой (цельноме­таллической) и наборной (из отдельных ножей). Первая харак­терна для гидрофайнеров и дисковых рафинеров, вторая — для роллов и конических мельниц Жордана.

Базальтовая гарнитура применяется в роллах, в кониче­ских и дисковых мельницах в тех случаях, когда требуется жир­ный помол массы.

Комбинированная гарнитура применяется в роллах и иногда в конических мельницах.

Тип размалывающей гарнитуры следует выбирать с учетом ха­рактера требуемого размола и свойств вырабатываемой бумаги. Металлическая гарнитура в отличие от базальтовой позволяет, изменяя удельное давление при размоле, получить массу с любыми свойствами. Однако процесс размола с использованием этой гар­нитуры не всегда экономичен. Металлическая гарнитура эффек­тивна в тех случаях, когда требуется укорочение волокна. Когда нужно расщепление или раздавливание волокон и получение хо­рошо гидратированной массы жирного помола, целесообразнее применять базальтовую гарнитуру. Базальтовая гарнитура непри­годна для укорачивания волокна при малом его ужирнении.

Применение комбинированной гарнитуры из базальта и метал­лических ножей расширяет возможности процесса размола.

 Эффективность работы роллов и конических мельниц с метал­лической гарнитурой и характер помола массы зависят от пра­вильного выбора толщины ножей. Тонкие ножи, толщиной 2—5 мм, применяют для садкого помола массы; средние по толщине ножи (6—8 мм) используют при выработке большинства массовых ви­дов бумаги; ножи толщиной 9—12 мм служат для получения массы жирного помола и в тех случаях, когда желательна гидра­тация волокон без существенного их укорочения.

 В роллах на планке обычно ставят ножи на 2—-3 мм тоньше, чем на барабане: ножи на барабане труднее менять, чем на план­ках. У конических мельниц толщина ножей на статоре и роторе обычно одинакова.

Литая гарнитура используется для гидрофайнеров и диско­вых рафинеров при рафинирующем размоле целлюлозы в первой ступени, перед размолом в конических мельницах Жордана. У гид­рофайнеров на роторе и статоре устанавливают ножи толщиной 10—16 мм, а у рафинеров более тонкие.

Ножи роллов, конических и дисковых мельниц с наборной гар­нитурой изготовляются из нержавеющей стали разных марок и твердости, углеродистой высококачественной стали и бронзы. Мюллер-Рид с соавторами  считают, что при размоле прочной сульфатной целлюлозы для лучшего укорочения волокон лучше всего применять ножи из твердой хромоникелевой стали (твердо­стью по Бринеллю 350—370 кгс/мм2). Такие ножи пригодны и для размола сульфитной небеленой целлюлозы. При размоле менее прочных волокнистых материалов и при желании получить менее укороченные волокна с большей степенью гидратации рекомен­дуется применять ножи из стали твердостью по Бринеллю 225— 275 кгс/мм2. Ножи из марганцовистой стали и фосфористой бронзы твердостью 180—220 кгс/мм2 применяются для рафинирующего и фибриллирующего размола при малом укорочении волокон.

Эти авторы придают очень большое значение микроструктуре материала ножей и считают, что размол массы можно значительно улучшить, создав надлежащую микроструктуру материала ножей. Чиаверина пришел к заключению, что для ускорения размола и повышения его эффективности следует применять пористые ножи. Ножи, изготовленные из пористого металла «Порал», по­зволяют получать при небольшом расходе энергии на размол массу низкой степени помола, но дающую очень прочную бумагу. Бухайер и Пижоль показали, что в дисковых рафинерах для рафинирующего размола волокна наиболее пригодна чугунная литая и базальтовая гарнитура, а для размола с укорочением во­локон— стальная. В обоих случаях достигается максимальная эффективность и экономичность процесса.

Из-за большой размалывающей поверхности, пористой струк­туры и наличия большого количества режущих кромок базаль­товая гарнитура создает значительное истирающее действие, и потому она весьма эффективна при жирном помоле массы. Приме­нение в роллах и конических мельницах Жордана ножей значи­тельной толщины для получения массы жирного помола нельзя признать целесообразным. Применять такие ножи рекомендуется в скоростных конических мельницах — гидрофайнерах, в которых действие гидратации усиливается эффектом гидроразмола вслед­ствие ударного действия гарнитуры при высоких скоростях вра­щения ротора. Наиболее рационален двухступенчатый размол, при котором гидратирующее действие достигается в одних аппа­ратах, а укорочение волокон до требуемых размеров — в других аппаратах, с тонкими ножами.

Для работы конических мельниц имеет значение не только материал гарнитуры и толщина ножей, но и конусность ротора, а также расположение ножей. При одиночном расположении но­жей с равными промежутками между ними достигается большее режущее действие ножей, а при групповом расположении повы­шается гидратация волокон. С увеличением конусности ротора конической мельницы уменьшается режущее действие аппарата.

Как показал В. Брехт, режущее действие ножей умень­шается при увеличении угла (в диапазоне от 0 до 40°) между но­жами ротора и статора размалывающих аппаратов, но при этом возрастает расход энергии на размол. Наиболее благоприятным углом между ножами барабана и планки у ролла он считает угол 6е. При таком расположении ножей ролл работает более ста­бильно, с меньшим шумом, исключается возможность западания и ударов ножей и вместе с тем достигается наиболее эффективная и экономичная работа аппарата.

1.11. Окружная скорость размалывающего органа

Окружная скорость размалывающего барабана роллов пери­одического действия составляет обычно 10—12 м/сек, скорость ротора конических мельниц Жордана (по среднему диаметру ро­тора) — в пределах 10—23 м/сек (у мельниц с интенсивным режу­щим действием 10—16 м/сек, а у мельниц с большим гидратирующим   действием    17—23   м/сек),  у   гидрофайнеров — в   пределах 25—33 м/сек, у дисковых рафинеров —в пределах 20—45 м/сек (по большому диаметру).

  Окружная скорость размалывающего аппарата обычно не ре­гулируется в процессе работы, однако часто возможна работа ко­нических и дисковых мельниц при разных скоростях; в зависимо­сти от назначения мельницы устанавливают электродвигатель с соответствующим числом оборотов.

С увеличением числа оборотов размалывающего органа при всех прочих равных условиях снижается режущее и повышается гидратирующее действие аппарата при размоле волокна. Это про­исходит, по-видимому, вследствие возрастания эффекта гидрораз­мола за счет ударного действия ножей о массу, а также ударов самой массы о стенки размалывающего аппарата, так как живая сила этих ударов возрастает пропорционально квадрату скорости. Наряду с этим возрастает и напряжение сдвига в зазоре между размалывающими органами аппарата, которое приводит к усилен­ной фибрилляции и гидратации волокна. По этой причине ско­ростные размалывающие аппараты,— гидрофайнеры и дисковые рафинеры,— снабженные к тому же и более толстыми ножами и работающие при более высокой концентрации массы, больше гидратируют и расчесывают волокна, а мельницы Жордана, ра­ботающие на меньших скоростях при меньшей концентрации массы и с более тонкими ножами, больше укорачивают волокно.


1.12.Кислотность массы

Изменение кислотности среды в пределах рН 5—8,5, при кото­ром обычно производится размол, не оказывает существенного влияния на скорость процесса размола и его эффективность. Уве­личение рН среды до 10—11 ускоряет процесс размола и позво­ляет снизить расход энергии на 15—20%, так как набухание во­локна повышается, однако целлюлоза при этом желтеет. Пожел­тение целлюлозы, как показал В. Гартнер, можно устранить введением в бумажную массу наряду со щелочью окислителей, например перекиси водорода, в количестве менее 1% от веса во­локна. По данным этого автора, расход едкого натра (для созда­ния рН массы 10—10,5) и окислителя экономически оправды­вается, так как стоимость сэкономленной энергии выше стоимости затрат на химикаты, а получаемая бумага обладает более высо­кой разрывной длиной (на 10%) и сопротивлением излому (на 25%).

1.13. Температура массы

Повышение температуры массы при размоле неблагоприятно отражается на этом процессе и на свойствах получаемой бумаги. Длительность размола увеличивается, волокна больше укорачи­ваются при размоле, а гидратация их снижается, что приводит к тому, что прочность бумаги из такой массы снижается, а пухлость, пористость и впитывающая способность бумаги повышаются. Эти свойства бумаги изменяются потому, что явления гидратации и набухания целлюлозного волокна носят экзотермический харак­тер. Чем ниже температура массы при размоле, тем сильнее набу­хают, гидратируются и фибриллируются волокна и тем больше увеличивается их пластичность. Понижение температуры массы способствует сокращению продол­жительности процесса размола и снижению расхода энергии при одновременном повышении механи­ческой   прочности   бумаги.


2. АППАРАТЫ РОУ. КОНИЧЕСКИЕ И ДИСКОВЫЕ

МЕЛЬНИЦЫ

2.1.Конические мельницы

Непрерывный размол бумажной массы находит в настоящее время все большее применение и вытесняет ролльный размол. Из большого количества различных размалывающих аппаратов непре­рывного действия наибольшее значение имеют конические мель­ницы и дисковые рафинеры. Кроме того, применяются роллы не­прерывного действия, мельницы Мордена, полуконические мель­ницы, супротонаторы и др.

Коническая мельница, изобретенная Иосифом Жорданом в 1848 г., длительное время использовалась лишь как подсобный размалывающий аппарат в дополнение к роллам и самостоятель­ного значения не имела. Она применялась для домалывания массы после роллов и для лучшего рафинирования волокна перед поступ­лением его на бумагоделательную машину.

Только в начале 30-х годов настоящего столетия были сделаны первые попытки осуществить непрерывный размол массы в одних конических мельницах. У нас такие опыты были проведены в 1934 г. Н. О. Зейлигером [51] на Вишерском комбинате при выработке пис­чей и бумаги для печати из 100% сульфитной беленой целлюлозы. Несмотря на то, что эти и другие опыты, проведенные за рубежом, показали значительные преимущества непрерывного размола бу­мажной массы перед периодическим размолом в роллах, особенно при выработке массовых видов бумаги в условиях специализации бумагоделательных машин, значительное распространение непре­рывный размол в конических и дисковых мельницах получил зна­чительно позже.

В настоящее время из конических мельниц наибольшее приме­нение находят мельницы Жордана (с наборной гарнитурой) и гидрофайнеры (с литой гарнитурой). Первые отличаются более тон­кими ножами, работают с меньшей окружной скоростью конуса, при более низкой концентрации массы и производят размол воло­кон при значительном их укорочении. Вторые отличаются более толстыми литыми ножами, работают при более высокой окружной скорости конуса, с более высокой концентрацией массы и произво­дят рафинирующий, расчесывающий размол, при котором волокна не претерпевают значительного укорочения, однако они хорошо фибриллируются,  гидратируются и дают достаточно прочный лист бумаги, в особенности по показателям сопротивления раздиранию и излому при относительно низкой степени помола по Шоппер-Риглеру.

К коническим мельницам можно отнести также мельницы Мор­дена, получившие теперь большое распространение за рубежом, и полуконические мельницы.

Чаще всего непрерывный размол бумажной массы ведут в две ступени, в гидрофайнерах и в мельницах Жордана. Иногда его осу­ществляют в три ступени, используя эти и другие аппараты, напри­мер мельницы Мордена и дисковые рафинеры, и применяя различ­ную размалывающую гарнитуру. При выработке массовых видов бумаги из массы сравнительно садкого помола ее размол может быть осуществлен в одну ступень в мельницах Жордана или в гид­рофайнерах.

Коническая мельница Жордана (рис. 1). Она состоит из кони­ческого ротора с отдельными, закрепленными на нем, ножами и статора (кожуха) с такими же ножами. Конический ротор (рис.2)

Приводится в движение от электродвигателя через эластичную муфту сцепления, допускающую осевое перемещение конуса отно­сительно неподвижного кожуха, чем достигаются сближение ножей ротора и статора и необходимая присадка размалывающего ор­гана. Перемещать конус в осевом направлении можно с помощью ручного маховичка через червячную или зубчатую передачу, а также с помощью электрического, пневматического или гидравли­ческого серводвигателя. В последнем случае возможна присадка конуса с пульта управления и автоматизация процесса  размола.

Рис 1. Общий вид конической мельницы Жордана: 1— кожух   (статор);   2 — присадочное   устройство;   3 — вход  массы;   4 — выход  массы

Рис. 2. Ротор мельницы Жордана:

1- конус   (ротор);   2 — подшипники

Масса внутри мельницы перемещается не только за счет гид­равлического напора при ее входе в узкий конец мельницы, но и за счет центробежной силы, увеличивающейся при движении массы от малого диаметра конуса к большому. Наблюдения, проведенные в последнее время рядом исследователей как у нас, так и за рубежом (Пашинский, Шильников, Хальме и Сирьянен), пока­зали, что масса внутри мельницы совершает сложное движение и в зависимости от величины напора внутри мельницы всегда имеется больший или меньший обратный поток массы, движущейся в пазах между ножами от широкого конца мельницы к узкому. Это говорит о том, что волокнистая масса не может беспрепятственно пройти между ножами без размола.

Конический ротор может быть изготовлен вместе с валом из одного куска металла, но может быть и полым чугунным, закреп­ленным на стальном валу. В продольные пазы на поверхности ко­нуса вставляют ножи, которые крепятся к ротору стальными коль­цами, и между ними закладываются деревянные прокладки. При­меняют и другие методы крепления ножей на конусе и кожухе ко­нических мельниц Жордана.

Ножи на конусе располагают по образующей с промежутками 15—30 мм, которые суживаются к узкому концу конуса. Обычно на конусе устанавливают ножи двух размеров: длинные, по всей длине конуса, и короткие, между длинными в широком конце мельницы.

Кожух мельницы изготовляют обычно из чугуна разъемным из двух половин и часто с ребрами жесткости, чтобы ножи не вибри­ровали при работе мельницы. Ножи на кожухе изогнуты под углом 170—174° и установлены так, что ножи конуса набегают на вер­шину угла этих ножей, что предотвращает западание ножей при работе мельницы и улучшает размалывающее действие аппарата. У других конструкций мельниц Жордана кожух выполнен неразъ­емным, из одной чугунной отливки. Расстояние между ножами кожуха обычно бывает несколько меньше, чем на конусе, и состав­ляет 10—20 мм. Высота выступа ножей на роторе и статоре обычно равна 10—20 мм. Толщина ножей у мельниц Жордана изменяется от 5 до 10 мм. Более тонкие ножи, толщиной 5—7 мм, применяют у конических мельниц Жордана, устанавливаемых во второй или третьей ступени размола после гидрофаинеров или дисковых рафи­неров для укорочения волокон, более же толстые ножи, 8—10 мм, применяют при размоле массы в одну ступень с меньшим укоро­чением волокон.

У конических мельниц Жордана срок службы ножей зависит от их толщины и материала, из которого они изготовлены, и сте­пени присадки, а также от кислотности среды и может колебаться в пределах от 1 до 3 и более лет. Мельницы Жордана могут быть снабжены базальтовой и полубазальтовой гарнитурой.

Конические мельницы создаются разных типоразмеров с конус­ностью ротора 11—24°. Мощность двигателя колеблется от 60 до 600 кет, окружная скорость по диаметру от 8 до 22 м/сек. Некото­рые конструкции мельниц позволяют работать при разных окруж­ных скоростях. Мельницы Жордана, предназначенные для укороче­ния волокон, работают при скорости 8—12 м/сек. Если при размоле необходимо    подвергнуть    волокно    большему    гидратирующему действию при меньшем укорочении, применяют конические мель­ницы с более толстыми ножами, работающие со скоростью 14—22 м/сек.

Страницы: 1, 2, 3, 4


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.