рефераты бесплатно
 
Главная | Карта сайта
рефераты бесплатно
РАЗДЕЛЫ

рефераты бесплатно
ПАРТНЕРЫ

рефераты бесплатно
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

рефераты бесплатно
ПОИСК
Введите фамилию автора:


Дипломная работа: Проект электрооборудования мостового крана на 15 тонн

  (2.7)

где Рн - мощность выбранного двигателя по каталогу, кВт;

 ωн – угловая скорость вращения выбранного двигателя, рад/с;

Имея значение частоты вращения ηн об/мин считаем угловую скорость по формуле:

 (2.8)

  (2.8)

  (2.7)

Рассчитываем нагрузочную диаграмму привода.

Нагрузочная диаграмма электродвигателя строится на основании уравнения движения электропривода М = Мс + Мдин.

Как видно из приведённого уравнения, для построения нагрузочной диаграммы электродвигателя М = ƒ(t) необходимо иметь график изменения во времени приведённых статических моментов Мс = ƒ(t) , т.е. нагрузочную диаграмму механизма подъёма мостового крана и график изменения во времени динамического момента  , для определения которого необходимо знать график изменения угловой скорости электродвигателя ω = ƒ(t) и приведённый момент инерции J.

Алгебраическая сумма статических и динамических моментов дает график изменения суммарного момента на валу электродвигателя, т.е. нагрузочную диаграмму электродвигателя.

Статические моменты, приведённые к валу электродвигателя при подъёме номинального груза:

  (2.9)

где mг - масса груза, т;

 mo - масса грузозахватного устройства, т;

 Dб - диаметр барабана, м;

 ηн - коэффициент полезного действия механизма;

 i - передаточное отношение редуктора и полиспаста.

  (2.10)

  (2.10)

где ωн – угловая скорость вращения электродвигателя, рад/с;

 Vп – скорость подъёма, м/с;

  (2.9)

 Статические моменты, приведённые к валу электродвигателя при тормозном спуске номинального груза:

  (2.11)

  (2.11)

Статические моменты, приведённые к валу электродвигателя при подъёме пустого грузозахватного устройства:

  (2.12)

где ηо – коэффициент полезного действия механизма при данной  нагрузке. Определяется по кривым ηо = ƒ(К3) , ηо = 0,1

Коэффициент нагрузки определяется по формуле:

  (2.13)

  (2.13)

  (2.14)

Статические моменты, приведённые к валу электродвигателя при спуске пустого грузозахватного устройства:

  (2.15)

  (2.15)

Значение Мсо может быть как положительным , так и отрицательным. Для приводов, у которых момент инерции не зависит от угла поворота, приведённой к валу электродвигателя динамический момент находится из уравнения:

  (2.16)

где  - ускорение или замедление ротора электродвигателя, рад/с2;

 Jэ - приведённый к валу электродвигателя эквивалентный момент инерции системы при работе с грузом и без груза, т.е. Jэг и Jэо

Определяем приведённый к валу электродвигателя эквивалентный момент инерции системы при работе с грузом:

  (2.17)

где К = 1,15 - коэффициент, учитывающий приближенно момент инерции редуктора и барабана;

Jдв - момент инерции электродвигателя (по каталогу), кгм2;

Jш - момент инерции тормозного шкива, кгм2;

Jм - момент инерции муфты и быстроходного вала редуктора, кгм2;

В ряде случаев Jш и Jм определяют приближенно в долях от момента инерции ротора электродвигателя:

Jш = 0,3∙Jдв ,  (2.18)

Jш = 0,3∙1,42 = 0,42 кгм2 (2.18)

Jм = 0,15∙Jдв ,  (2.19)

Jм= 0,15∙1,42 = 0,21 кгм2 (2.19)

Jп.д.г. – момент инерции поступательно-движущихся элементов  инерции, приведенный к валу электродвигателя

  (2.20)

  (2.20)

где Vп – скорость подъёма, м/с;

 ωн – угловая скорость вращения электродвигателя, рад/с;

  (2.17)

Определяем приведённый к валу электродвигателя эквивалентный момент инерции системы при работе без груза:

  (2.21)

где Jп.д.о. – момент инерции поступательно-движущихся элементов системы без учёта веса груза, приведённый к валу электродвигателя;

 (2.22)

 (2.22)

 (2.23)

Определяем допустимое ускорение электродвигателя:    

  (2.24)

где адоп – максимально допустимое линейное ускорение груза, м/с2;

Обычно адоп = аср. = (0,1÷0,3) м/с2 ,следовательно берём адоп = 0,2 м/с2;

  (2.24)

Динамический момент системы при подъёме груза:

  (2.25)

  (2.25)

Расчёт среднего пускового момента двигателя.

Зная величину статических и динамических моментов, можно определить средний пусковой момент, развиваемый электродвигателем при подъёме груза по формуле:

 Мср.п. = Мпг + Мдин , (2.26)

 Мср.п. =464 + 202,4 = 666,4 Нм (2.26)

Обычно Мср.п недолжно превышать (1,7÷2)∙Nн

Определение времени разгона при подъёме груза:

  (2.27)

где ωкон и ωнач - соответственно конечное и начальное значение угловой скорости, ωкон = ωн , ωнач = 0, рад/с;

Среднее время пуска для механизма подъёма обычно находится от 1 до 5 с;

  (2.27)

Определение времени разгона при тормозном спуске.

Двигатель работает в режиме электронного тормоза (тормозной спуск) и груз ускоряется под действием собственного веса, т.е. разгон системы происходит под действием момента, равного Мсг и определяется по формуле:

 (2.28)

 (2.28)

Определение времени разгона при подъёме грузозахватного устройства:

  (2.29)

где М´срп = (1,15÷ 1,25)∙Мн

 Мн – средний пусковой момент при подъёме и опускании

 грузозахватного устройства.

 М´срп = 1,2∙414,4 = 497,28 Нм (2.30)

 

  (2.31)

Определение времени разгона при спуске грузозахватного устройства:

 (2.32)

 (2.32)

Определение времени торможения.

Схемы управления электродвигателями механизмов подъёма предусматривают экстренное наложение механических тормозов при отключении статора электродвигателя от сети, т.е. при установке силового или командоконтроллера в нулевое положение.

В связи с этим для механизмов подъёма электрическое торможение электродвигателя можно не учитывать.

Время торможения для различных режимов определяется с учётом момента, развиваемого только механическим тормозом.

Момент тормоза Мт определяется максимальным статическим моментом Мс.макс, приведенным к тормозному валу (обычно это вал электродвигателя) и коэффициент запаса Кт

 

Мт = Кт∙Кс.макс. (2.33)

где Мс.макс. – максимальный статический момент на тормозном валу

Мс.макс = Мсг Нм;

Кт - коэффициент запаса.

По правилам Госгортехнадзора коэффициент имеет следующие значения:

- для легкого режима работы = 1,5;

- для среднего режима работы = 1,75;

- для тяжелого режима работы = 2;

- для весьма тяжелого режима работы =2,5;

При этом механизмы подъёма кранов, транспортирующих жидкий металл, ядовитые и взрывчатые вещества, должны иметь два тормоза. Коэффициент запаса каждого из них должен быть не менее 1,25.

Мт = 1,75∙297,8 =521,15 Нм (2.34)

По рассчитанному значению Мт выбираем тормоз с номинальным тормозным моментом равным или несколько больше, чем Мт, т.е. Мнт ≥ Мт.

Время торможения при подъёме груза:

 (2.35

 (2.35)

Время торможения при спуске груза:

 (2.36)

 (2.36)

Время торможения при подъёме грузозахватного устройства:

 (2.37)

 (2.37)

Время торможения при спуске грузозахватного устройства:

 (2.38)

 (2.38)

где ωнач – скорость, с которой начинается режим торможения;

 ωкон – скорость, при которой заканчивается режим торможения.

Пути, пройденные грузом или грузозахватным устройством во время пусков и торможений:

- при подъёме груза:


 (2.39)

 (2.39)

 (2.40)

 (2.40)

где Vп - скорость подъёма груза, м/с;

tр.пг - время разгона при подъёме груза, с;

 t.т.пг - время торможения при подъёме груза, с;

- при спуске груза:

 (2.41)

 (2.41)

 (2.42)

 (2.42)

- при подъёме грузозахватного устройства:

 (2.43)

 (2.43)

 (2.44)

 (2.44)

- при спуске грузозахватного устройства:

  (2.45)

  (2.45)

  (2.46)

  (2.46)

Пути, пройденные грузом или грузозахватным устройством с установившейся скоростью:

- при подъёме груза

Sу.пг = H – Sр.пг. – Sт.пг. , (2.47)

Sу.пг =10 - 0,081 - 0,019 = 9,9 м (2.47)

- при спуске груза

Sу.сг = H – Sр.сг. – Sт.сг. , (2.48)

Sу.сг =10 - 0,054 - 0,072 = 9,87 4м (2.48)

- при подъёме грузозахватного устройства

Sу.по = H – Sр.по. – Sт.по. , (2.49)

Sу.по =10 - 0,0234 - 0,030 = 9,946 м (2.49)

- при спуске грузозахватного устройства

Sу.со = H – Sр.со. – Sт.со. , (2.50)

Sу.со =10 – 0,0324 -0,029 = 9,938 м (2.50)

Время работы с установившейся скоростью и время паузы:

- при подъёме груза

 (2.51)

 (2.51)

- при спуске груза

 (2.52)

 (2.52)

- при подъёме грузозахватного устройства

 (2.53)

 (2.53)

- при спуске грузозахватного устройства

 (2.54)

 (2.54)

Время паузы:

 (2.55)

где tп – время цикла, с;

- суммарное время работы, с;

= tр.пг+ tу.пг+ tт.пг+ tр.сг+ tу.сг+ tт.сг+ tр.по+ tу.по+ tт.по+ tр.со+ tу.со+ tт.со (2.56)

= 0,9+ 55+ 0,22+ 0,61+ 54,8+ 0,81+ 0,26+ 55,25+ 0,34+ 0,36+ 55,21+ 0,33=224,09 с (2.56)

 (2.55)

Строим скоростную и нагрузочную диаграмму электропривода (рисунок 1)

Проверяем предварительно выбранного двигателя по условию нагрева и перегрузочной способности.

Фактическая продолжительность включения

 (2.57)

 

Расчётный эквивалентный момент:


 

 (2.58)

 (2.58)

Эквивалентный момент, соответствующий продолжительности включения выбранного электродвигателя.

 (2.59)

Если эквивалентный момент равен или несколько меньше номинального, то выбранный электродвигатель проходит по нагреву, т.е.

Мэ ≤ Мн (2.60)

280,1 ≤ 414,4 (2.60)

Как видно из уравнения выбранный электродвигатель проходит по нагреву.

Проверку на перегрузочную способность производим по условию:

1,3∙Ммакс.нагр ≤ (0,8÷0,85)∙Ммакс.дв (2.61)

где Ммакс.нагр – максимальный момент из нагрузочной диаграммы;

Ммакс.дв – максимальный момент электродвигателя;

В данном случае:

1,3∙666,4 ≤ 0,825∙1370 (2.61)

866,32 ≤ 1130,25 (2.61)

Как видно из условия выбранный электродвигатель проходит по перегрузочной способности.

2.3 Разработка принципиальной схемы электропривода и описание

её работы

Схема с магнитным контроллером и динамическим торможением, контроллер типа ТСД.

При подъёме груза регулирование скорости электродвигателя производится изменением сопротивления резисторов в цепи обмотки ротора с помощью контакторов ускорения К6 – К9. При спуске груза регулирование производится с помощью тех же резисторов но в режиме динамического торможения. При подъёме и спуске предусматривается автоматический разгон под контролем реле времени (ускорения) КТ2, КТ3 и КТ4. Контроль разгона при подъёме осуществляется реле КТ2 и КТ3, начиная с 3 положения. Реле КТ4 при этом не работает так как в цепь его катушки включены замыкающие контакты К2.

Режим динамического торможения осуществляется на всех положениях спуска, кроме последнего, на котором электродвигатель питается от сети с невыключеными ступенями резисторов роторной цепи. На первом положении спуска все ступени резисторов, кроме невыключаемого, выведены из цепи ротора включенными контакторами ускорения К7, К8, К9.

На положениях спуска 2 и 3 для увеличения скорости в цепь ротора вводятся ступени резисторов (отключаются контакторы К8 и К9 – на втором положении и К7 – на третьем положении). При переходе с третьего на четвёртое положение спуска включается контактор К6 и под контролем реле ускорения КТ2 – КТ4 – контакторы К7 – К9.

Реверс в схеме выполняется контакторами К1 и К2,динамическое торможение – контактором К3, электрически сблокированым с контакторами К1, К2, К5 и механически с К5. Подпитка электродвигателя в режиме динамического торможения при положениях спуска груза осуществляется от сети через контактор К3 (включенного параллельно К5), две фазы электродвигателя, контакт контактора К3 (цепи включения выпрямителя UZ), катушка реле контроля KV1, диод VD12, резистор R1.

В схеме предусмотрено и торможение с помощью механического тормоза с тормозным электромагнитом YB.

Для повышения надёжности в цепи катушки YB предусмотрен двойной разрыв, осуществляемый контактами контактора К4 и реле KV2. На панели управления предусмотрена защита: нулевая (минимального напряжения) – реле KV2, максимального тока – реле KA, конечная – выключатели SQ1 и SQ2, от пробоя вентилей – реле KV3.

2.4 Расчет и выбор отдельных элементов схемы

Включение резисторов в цепи электродвигателей производится с целью регулирования их скорости, а также для ограничения тока и момента при пуске, реверсе и торможении.

Расчёт пусковых сопротивлений для асинхронного двигателя типа

МТН512-8, Рн= 31кВт , Uн = 380В, nн = 715 об/мин,

Ер.н= 304В, Iр.н= 63 А, λ = 3,3

Расчет пусковых сопротивлений производится графическим, аналитическим и графоаналитическим методами расчета.

При условии, если М1 < 0,75Мкр, то механическую характеристику принимают прямолинейной и расчет ведется как для двигателя постоянного тока независимого возбуждения.

Если М1 > Мкр, то характеристики не могут быть приняты прямолинейными и расчет ведется уточненным графоаналитическим методом.

Критический момент двигателя

Мкр = λ∙ Мн (2.62)

Мкр = 3,3∙ 414,4 = 1367,52 Нм (2.62)

Сравниваемый момент М1

М1 = 2∙Мн (2.63)

М1 = 2∙414,4 = 828,8 Нм (2.63)

Проверяем

М1 = 828,8 Нм < Мкр = 1367,52 Нм,

Исходя из неравенства, приведенного выше, принимаем механическую характеристику линейной, и расчет ведем аналитическим методом.

Номинальная скорость вращения рассчитана в пункте 2.1 расчетной части проекта и составила ωн = 74,8 рад/с.

Скорость вращения поля

 (2.64)

где f – частота сети, f = 50 Гц;

р – число пар полюсов, р = 3;

 (2.64)


Номинальное скольжение

 (2.65)

 (2.65)

Задаемся значениями моментов

Мmax(М1) = (1,8÷2,8)∙Мн (2.66)

Мmax(М1) = 2*414,4 = 828,8 Нм (2.66)

Мmin(М2) = (1,1÷1,3)∙Мн (2.67)

Мmin(М2) = 1,2*414,4 = 497,28 Нм (2.67)

Определяем кратность моментов

 (2.68)

 (2.68)

Определяем сопротивление ступеней

 , (2.69)

где Е2н – напряжение между кольцами ротора, В

 I1 =2∙ Iрн = 2∙63 = 126 А (2.70)

  (2.69)

  (2.71)

 (2.71)

 (2.72)

 (2.72)

 (2.73)

 (2.73)

Определяем сопротивление секций

RВШ1 = R1 – R2 , (2.74)

RВШ1 = 15,5 – 9,33 = 6,17 Ом (2.74)

RВШ2 = R2 – R3 , (2.75)

RВШ2 = 9,33 – 5,62 = 3,71Ом (2.75)

RВШ3 = R3 – R2ВТ , (2.76)

RВШ3 = 5,62 – 3,38 = 2,24Ом (2.76)

Производим проверку

RВШ1 + RВШ2 + RВШ3 + R2ВТ = R1 (2.77)

6,17+3,71+2,24+3,38=15,5 Ом (2.77)

Вывод: равенство удовлетворяет условию, следовательно, сопротивления рассчитаны верно.

2.5 Расчет и выбор питающих кабелей

Исходные данные для расчета приведены в таблице 2.2

Таблица 2.2 – Исходные данные для расчета питающего кабеля в

 условиях кузнечнопрессового цеха завода «Азовмаш»

Тип двигателя

Номинальный ток Iн , А

Номинальное напряжение Uн, В

Мощность двигателя Р, кВт cos φ Длина питающего кабел l, м
МТН512-8 79 380 31 0,69 30

Выбор сечения производим по условию нагрева длительным расчётным током по формуле:

Страницы: 1, 2, 3


рефераты бесплатно
НОВОСТИ рефераты бесплатно
рефераты бесплатно
ВХОД рефераты бесплатно
Логин:
Пароль:
регистрация
забыли пароль?

рефераты бесплатно    
рефераты бесплатно
ТЕГИ рефераты бесплатно

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.