![]() |
|
|
Учебное пособие: Электрические аппаратыРис.4. Характеристика намагничивания магнитной системы и зависимость времени отпускания от напряжения питания Это время называется временем подготовки или зарядки. Если длительность приложения напряжения меньше этого времени, то выдержка времени уменьшается. Время зарядки зависит от габаритов реле и составляет около 1 с. На выдержку времени электромагнита влияет температура короткозамкнутой обмотки. Согласно
Здесь t — время отпускания; Заводы-изготовители гарантируют работу таких электромагнитов в диапазоне температур от -– 40 до +60 °С. Если температура короткозамкнутой обмотки равна окружающей, то при указанном изменении температуры сопротивление, а следовательно, и выдержка времени изменятся почти в 1,5 раза. В среднем можно считать, что изменение температуры на каждые 10 °С ведет к изменению времени выдержки на 4 %. Зависимость выдержки времени от температуры является одним из основных недостатков электромагнитов с короткозамкнутой обмоткой. Динамика и время срабатывания электромагнитов а) Время срабатывания. До сих пор мы рассматривали только статические характеристики электромагнитов, когда в их обмотке проходит неизменный ток, причем якорь либо неподвижен, либо якорь движется, но ток в обмотке не меняется по своему действующему значению, поскольку электромагнит имеет последовательную обмотку. В таком режиме работают тормозные и удерживающие электромагниты. В большинстве электромагнитов процесс имеет динамический характер. В этом случае после включения обмотки электромагнита происходит нарастание потока в магнитной цепи до тех нор, пока сила, развиваемая электромагнитом, не станет равна противодействующей силе. По достижении указанного равенства якорь начинает двигаться. При этом ток и поток меняются по весьма сложному закону, определяемому параметрами электромагнита и противодействующей силой. После того как якорь придет в свое конечное положение, ток и поток в электромагните будут продолжать изменяться до тех пор, пока не достигнут установившегося значения.
Так как
в начальном положении якоря рабочий зазор имеет относительно большое значение,
магнитная цепь может считаться ненасыщенной, а индуктивность обмотки—
постоянной величиной. Поскольку потокосцепление
(5.4) Решение этого уравнения относительно тока, как известно, имеет вид:
(5.5) где
Величина тока, при котором начинается движение якоря, называется током трогания /Тр, а время нарастания тока от нуля до /Тр — временем трогания £Тр. Для момента трогания можно записать в виде
(5.6) Решив относительно времени трогания, получим:
(5.7) Таким
образом, во-первых, время трогания пропорционально постоянной времени T, и, во-вторых, по мере приближения
(5.8) При
движении якоря
Рис. 5.1. Зависимость тока от времени Имеется целый
ряд методов расчета процессов в электромагните при движении якоря. Как показано
на рис. 5.1, в динамике начало движения имеет место при токе Для
ориентировочного определения времени движения можно воспользоваться статической
характеристикой. На рис.5.2 изображены статическая тяговая характеристика
электромагнита
где После интегрирования получим:
(5.10) Рис.5.2. Статическая тяговая характеристика электромагнита и характеристика противодействующей силы Интеграл удобно рассчитывается графоаналитически. Скорость в точке хода б равна:
(5.11) где Зная скорость в любой точке хода, можно рассчитать время движения на всех участках и суммированием определить полное время движения. Иногда
во время движения ток мало меняется и составляет некоторую долю а от
установившегося б) Ускорение и замедление срабатывания и отпускания электромагнита постоянного тока. Полное время срабатывания состоит из времени трогания и времени движения:
(5.12) В
большинстве случаев основную часть времени срабатывания составляет время
трогания. Поэтому при ускорении и замедлении срабатывания воздействуют прежде
всего на
(5.13) Допустим, что ток трогания не меняется (неизменна сила противодействующей пружины). Рассмотрим влияние активного сопротивления цепи при неизменной величине индуктивности и питающего напряжения. После включения электромагнита ток в обмотке изменяется и скорость нарастания тока равна:
(5.14)
При уменьшении сопротивления R увеличивается установившийся ток и величина уменьшается. Можно показать, что логарифм уменьшается быстрее, чем растет постоянная времени Т. В результате ^Tpi> >tTp2, несмотря на то, что Т{<Т2. Чем меньше активное сопротивление цепи, тем быстрее будет срабатывать электромагнит.
Для ограничения температуры нагрева необходимо развивать у катушки поверхность охлаждения, т. е. ее размеры. Увеличение размеров обмотки потребует увеличения размеров магнитопровода. Для ограничения размеров электромагнита в настоящее время широко применяется форсировка по схеме рис. 5.4. В отключенном положении сопротивление #ДОб шунтировано размыкающим контактом, связанным с якорем электромагнита. После замыкания контакта К малое сопротивление обмотки R способствует быстрому нарастанию тока до тока трогания. После начала движения якоря контакт размыкается и в цепь вводится сопротивление ./?доб, благодаря чему ограничивается мощность Р, выделяемая в обмотке:
(5.15)
Рис.5.3 Изменение тока во времени для двух значений активного сопротивления
Рис.5.4. Схема форсировки электромагнита Иногда для ускорения срабатывания сопротивление/?ДОб шунтируют конденсатором. В первый момент времени конденсатор уменьшает падение напряжения на этом сопротивлении, благодаря чему обеспечивается форсировка электромагнита. В установившемся режиме величина тока в цепи ограничивается сопротивлением ^?ДОб-. Величину емкости конденсатора в рекомендуется брать равной:
(5.16) где
Иногда возникает необходимость ускорить срабатывание уже готового электромагнита. Увеличение питающего напряжения без изменения активного сопротивления цепи ведет к ускорению срабатывания, но катушка электромагнита может сгореть, если при номинальном значении питающего напряжения температура обмотки равна предельно допустимой. В этих случаях рекомендуется при повышении питающего напряжения в цепь включать добавочное сопротивление, чтобы величина установившегося тока оставалась неизменной и равной /у. При этом ускорение срабатывания происходит за счет уменьшения постоянной времени. Величина
На рис. 5.4 показано изменение токов в обмотке электромагнита при неизменном установившемся токе. Кривые показывают, что в данном случае чем больше постоянная времени, тем больше время трогания. В
заключение отметим, что при прочих равных условиях увеличение натяжения противодействующей
пружины ведет к росту Время отпускания электромагнита состоит из времени спадания потока до потока отпускания, при котором сила электромагнита становится равной противодействующей силе и времени движения при отпускании. В большинстве случаев время спада потока при отсутствии короткозамкнутых обмоток значительно меньше, чем время движения якоря при отпадании. Поэтому в основном считаются со временем движения. Для упрощения расчетов можно принять, что якорь и подвижные части двигаются равноускоренно под действием силы, равной средней силе пружины. Тогда время отпускания можно найти с помощью формулы
(5.17) где т — приведенная к центру полюса масса якоря и подвижных частей; х— перемещение якоря; Fcp — приведенное к центру полюса среднее значение силы отключающей пружины на пути х. Рис.5.4. Изменение токов в обмотке электромагнита при неизменном установившемся токе Для создания электромагнитов замедленного действия применяются короткозамкнутая обмотка или гильза. Эскиз электромагнита с короткозамкнутой обмоткой показан на рис. При включении питающей обмотки в магнитной цепи нарастает поток. Этот поток наводит в короткозамкнутой обмотке э. д. с. Последняя вызывает ток такого направления, при котором поток короткозамкнутой обмотки направлен встречно с намагничивающим. Результирующий поток равен разности этих потоков. Скорость нарастания потока уменьшается, а время трогания увеличивается. Результирующий поток нарастает во времени по экспоненте с суммарной постоянной времени
(5.18) где
Рис. 5.5.Электромагнит с короткозамкнутой обмоткой Если
пренебречь потоками рассеяния, то индуктивности
(5.19) Ввиду того, что при отпущенном якоре Gb мало, суммарная постоянная времени Ti + T2 невелика и замедление электромагнита получается небольшим. При отключении электромагнита с короткозамкнутой обмоткой можно считать, что ток в первичной обмотке практически мгновенно спадает до нуля из-за быстрого нарастания сопротивления дугового промежутка в отключающем аппарате. Изменение
потока определяется процессом затухания тока в короткозамкнутой обмотке. При
спадании потока в короткозамкнутой Замедленное спадание потока создает выдержку времени при отпускании. Для вторичной короткозамкнутой обмотки ненасыщенной системы в этом случае можно записать: (5.20) Поскольку
величина зазора уменьшилась, индуктивность при притянутом якоре Решив относительно тока, получим:
(5.21) Умножив обе части на G\ w2, после преобразования получим:
(5.22) Благодаря
тому, что рабочий зазор в притянутом состоянии в десятки и даже сотни раз
меньше, чем в отпущенном При н. с, равной нулю, в цепи устанавливается поток, определяемый кривой размагничивания материала и воздушным зазором. Этот остаточный поток может создавать силу притяжения большую, чем сила, развиваемая пружиной. Произойдет залипание якоря. Для устранения залипания ставится немагнитная прокладка, снижающая величину остаточного потока. В реальных конструкциях реле времени магнитная система при притянутом положении якоря сильно насыщена. Для насыщенной цепи справедливо уравнение
(5.23) Решив уравнение относительно времени, получим: (5.24) где Для определения значения интеграла рассчитывается зависимость потока в рабочем зазоре от н. с. После этого строится зависимость 1/ш=/(Ф) и графическим интегрированием решается. в) Динамика электромагнитов переменного тока. Рассмотрим магнитную цепь электромагнита, у которого магнитопровод ненасыщен. Пусть включение происходит в нуль напряжения. В этом случае можно записать:
(5.25) Поскольку цепь линейна, ток можно выразить через поток
Подставив, получим:
(5.26) Решив это уравнение относительно потока, найдем:
(5.27) где Фт — максимальное значение потока. Согласно (5.27) при / = 0 поток в системе также равен нулю. Через время t=n/u> поток достигает наибольшего значения, поскольку постоянная составляющая потока складывается с переменной составляющей. Если пренебречь затуханием, то через полпериода поток достигает величины, равной 2Фта. По мере затухания постоянной составляющей потока пиковое значение потока будет уменьшаться, пока не достигнет Фт. Таким образом, в электромагните переменного тока наибольшие пиковые значения потока, а следовательно, и силы, будут иметь место в начале процесса включения, причем пиковое значение потока и силы наступает примерно через 0,01 сек после начала включения (при частоте тока 50 Гц). Это обеспечивает малое время трогания. Если магнитная система насыщена, то возникновение постоянной составляющей потока в момент включения ведет к появлению большого сильно искаженного намагничивающего тока. При включении в нуль тока (потока) постоянная составляющая не появляется и пиковое значение потока появляется через четверть периода после начала включения. Таким образом, и в этом случае обеспечивается быстрое срабатывание электромагнита без применения специальных мер. Расчет динамических характеристик электромагнитов переменного тока аналитически очень затруднен. Эту задачу удается решить применением аналоговых счетных машин. Необходимо отметить, что в момент включения электромагнита рабочий зазор в магнитной цепи велик, что вызывает согласно большой намагничивающий ток, в десятки раз больший, чем ток в притянутом положении якоря. Магнитные цепи с постоянными магнитами а) Общие сведения. Для создания постоянного магнитного поля в целом ряде электрических аппаратов используются постоянные магниты, которые изготавливаются из магнитно-твердых материалов, имеющих широкую петлю гистерезиса (рис.5.6). Работа постоянного магнита происходит на участке отH= 0 до H = — Нс. Эта часть петли называется кривой размагничивания. Рассмотрим основные соотношения в постоянном магните, имеющем форму тороида с одним малым зазором б (рис.5.6). Благодаря форме тороида и небольшому зазору потоками рассеяния в таком магните можно пренебречь. Если зазор мал, то магнитное поле в нем можно считать однородным. Рис.5.6. Кривая размагничивания постоянного магнита Если пренебречь выпучиванием, то индукции в зазоре В& и внутри магнита В одинаковы. На основании закона полного тока при интегрировании по замкнутому контуру 1231 рис. получим:
(5.28)
Рис.5.7 Постоянный магнит, имеющий форму тороида
Сравнивая можно видеть, что в случае с постоянным магнитом н. с, создающей поток в рабочем зазоре, является произведение напряженности в теле магнита на его длину с обратным знаком —Hl. Воспользовавшись тем, что
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |